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Question

from
July 11
Lecture

* How
many
pions do
you make
for a
given
Incoming
proton at
some
energy”?

Ref: S.Kopp,

Phys. Rep. 439:

101-159, 2007
12 July 12007
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Question
from

July 11

 How many
pions do
you make
for a given
Incoming
proton at
some
energy”?

e Ilied
yesterday:
p, 1s more
like
280MeV,
not

200MeV

Reference: S.Kopp, Phys. Rep.
439:101-159, 2007
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Question from July 11

e How efficient
1s this horn
focusing?

o Reference:

NuMI Technical
Design Report

o 3 different beams
are from 3
different
target/horn
positions

* Note famous
“GEANT Bump”
from problem in
hadron
production model
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Almost a Question from July 11

e How
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12 July

Question from July 11

Are the near and far detector fluxes
identical? (Example: T2K
experiment)

Remember: 0 depends A LOT on
whether or not you’ve focused the
pions that made those neutrinos

FD = 250 km
o ND =300 m

Far/Near
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Question from July 11

 How many particles are we talking about here?

Protons K, () v, »%oVe
Let them Shielding
decay
Protons K ) v at
Near Det
~1013 per |Few 7 per Depends on decay |20
pulse 120 GeV length: ~1 per w interactions/
protons 2x 1013

12 July 12007 Debbie Harris, Conventional Neutrino Beams I 7



Getting from Event Rates to v Flux

N=¢ o, &M

_ N (events) y kton y g
" o, (cm”/nucleon)s, M (kton) 10°g  6.02x10* nucleons
) 20
2 = 6X10 cmx6x10™
§ =0.6x10°—
! cm

Or at 1km away, 2x10'3 protons make about 2x10!° neutrinos (2mx2m)

12 July 12007 Debbie Harris, Conventional Neutrino Beams || 8



In the words of Ken Peach

“When I was on an experiment to determine €’/¢, once
we were close to getting the result out, I realized
something:

All the theorists asked ‘what value did you measure?’
and

All the experimentalists asked ‘what uncertainty on
the measurement did you end up getting?’ ”

This talk will try to speak to both theorists and
experimentalists. ..

but remember who wrote the talk...
12 July 12007 Debbie Harris, Conventional Neutrino Beams ||



Goals of Long Baseline
Oscillation Measurements

* Measurements of “atmospheric neutrino
oscillation parameters™ v, disappearance as a
function of neutrino energy

« Searches for CP violation and understanding the
neutrino mass hierarchy: v, appearance

* Verity Oscillation Framework: v_appearance

o Search for Sterile Neutrinos: Neutral Current
disappearance, looking for three distinct Am?

12 July 12007 Debbie Harris, Conventional Neutrino Beams ||
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Conventional Neutrino Beam Summary

Absorber Muon Monitors
Target D o \ l | l 5 J' |
Decay Pipe | S
. Target Hall y ip u* > G/ r A ¥ R
120 GeV _ :—Z A . (sl et
protons \ N o | SSS T HEP S

From g P 5@

Main Injector HOI‘HS#2 ot N -.3f > __ H _’ .\ ,1 ...._y:-_____i)f
10 m 30 m / : 4 :
675 m Rockl Rock Roek |
_ Hadron Monitor > m 2m 18m  300m
Major Components:
: Hadron Pr lon
*Production Target adron Productio
e . Syst Proton Beam measurements
Ocusing _yS em Pion Measurements
‘Decay Region Muon Measurements
*Shielding at angles vs momentum

*Monitoring at 0° versus shielding

12 July 12007 Debbie Harris, Conventional Neutrino Beams I 11



Systematic Uncertainties

Neutrino Flux

— Hadron Production PI'OblGIIl
* wKratio uncertainties
* x and p, spectrum of produced Pions/Kaons

— Beamline Geometry all affect the

* Focusing uncertainties
* Alignment Uncertainties

near and far

Neutrino Interactions: detector both,
Background and Signal! .
— Quasi-elastic Uncertainties you can t always
— Resonance (low W) Uncertainties Sep arate
— DIS (high W)
_ Nuclear Effects one from the other

Event Selection

Event Energy Resolution
— Important especially for measurements versus neutrino energy
— Narrow Band beams: energy resolution is key to background rejection

12 July 12007 Debbie Harris, Conventional Neutrino Beams I 12



Two detector experiment
(in theory)

N(NC),=®, oN¢
N(CC),=®, cCC

G o(L)=0yL? -

»Make two detectors as identical as possible
- same scintillator, water, steel etc. -
»Measure v spectrum in the near detector N (NC)f:(DfG
»Predict the v spectrum in the far detector
. .o — CC
» Cross section uncertainties should cancel... N(Cc)f (Df o
» Detector efficiency uncertainties should cancel...

»Simple, right?
12 July 12007 Debbie Harris, Conventional Neutrino Beams || 13




Two Detector Experiment
(in practice)

« Near Detector sees a line source of neutrinos, far
detector sees a point source

— Think: where do v,’s in beam decay compared to v,’s?

 Near Detector will have different event rate
— Beam-induced rates differ by 10*to 10°

— Cosmic ray rates differ due to different shielding and
detector size

* Near Detector Design 1s different
— Diafferent electronics, PMT’s, active area coverage...

* v,—Vv may be large: v, CC suppression large
— v, CC energy distribution is very different

12 July 12007 Debbie Harris, Conventional Neutrino Beams I 14



Near Detector Design

 Far detector must be massive: the more
instrumented it 1s, the more $/kton...

« Tradeoff between segmentation and far detector
mass

e Near Detector Design options:

— “Identical” to far detector

 Argue that detector efficiencies and cross sections are the
“same”, you just need independent flux measurements

— Much more segmented and fine-grained

* Try to measure fluxes and cross sections as best you can, make
far detector prediction

 Ideally, you would do both...

12 July 12007 Debbie Harris, Conventional Neutrino Beams ||
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K2K near neutrino detectors (K2K-II)

‘ SciBar detector ‘
Full active scintillator tracker / Scintillating fiber tracker

CH target (9'? 8tfid. vol.) | water target (6t fid. vol.)
Muon range detector CCQE identification
Iron target (330t fid. vol.) — L~
2858385838888
| ' v beam
vbeam 1kt water
monitor Cherenkov
(momentum & detector
direction.) water target (25t fiducial volume

12 July 12007 Debbie Harris, Conventional Neutrino Beams I 6



Nakadaira, v2006

T2K Near Detector Suite

« What’s interesting here i1s how 1t differs from the

K2K Near Detector suite: no Cerenkov detector
On-axis detector

Measure v-beam profile

FGDs

. : .. ECAL TPCs
= v-beam direction at 1mrad precision. Maonct
agnc
iron - scintillator stacks x 14 units yokge
o NN Magre
. e coils
"pEEEREEE ¢
;\”';z“:a* 7
o L r.,"‘:"{\k-
. m
Off-axis detector: In Magnet (B=0.2T) —
Measure v-flux in SK direction : ® NP(E). v beam
Measure v, v and v_+v_ fluxes separately.
Neutrino Energy < CC-QE kinematics.
Cross sections of v interactions . Tracker
CC-1n/CC-QE ... BG for E, reconstruction P1-zero

NC-n° production ... BG for v, detection | SMRD Detector



T2HK Near Detector Addition: 2km

-'I 2 5° | =3 J 1 -~ Far Detector
arget Z t lﬂ (SK)

Near Detactﬂr

295 km

Om 280m 2 km

Detectors located 2km
from target sees point source
of neutrinos, like Far Detector

Question:
what about v — v_at the
2km detector?

2km detectors: A
Liquid Argon
Water Cerenkov

Muon Range Detector
12 JUIy 12007 DebeU naiin, VuUIlIveliuuliadal NTSuUlU Iiv pedlliio 11 10




MINOS Near Detector (cf Far)

e 1040m from target (735km)

e 103m underground
(705m)

980 ton mass
(5400 ton mass)

e 38mx4.8mx 16m
(8m octagon)

o 282 steel + 153 scintillator

planes
(484 planes)

e Two distinct sections:
Front: Calorimeter
— Every plane instrumented
Back: Spectrometer

— One 1in five planes
instrumented

« Fast QIE electronics

— Continuous (19ns)
sampling in spill
12 July 12007 Debbie Harris, Conventional Neutrino Beams I 19
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NOVA Near Detector

* Same segmentation and structure as far detector, but

- sees line source e ErTTT—
MINOS Surface

— Needs very tight fiducial cuts -~
. . Building
» Designed to operate at several different angles

~6.5x106
events/year
below 5 GeV 1n —
fiducial volume 14 4m __ -::.: o e

Can operate between
4-21 mrad Off axis
(Far Detector is 14mrad)

4 1m
f S_}l G"i.’i.-".”:'l‘ ]Fa r :’:w‘t.,\z -
Containment Ll
Recgion . f\,-.
g ) 100,000 ." :'..-\ '...\
2.1m Target Region "‘\ Sl
0+ [ h‘a_ o

1 2 3 4 5 6 7 8 9 10

2wy 2o Velo Reslon, i reyy Reter Shanahans v 2006w - - -



Near Detector Summary

Exp’t Detector Near Detector Strategy

K2K Water Cerenkov Several, one “identical”

MINOS Steel Scintillator “Identical™, but faster electronics

OPERA Emulsion-Lead No Near Detector

T2K Water Cerenkov 2 at 280m for flux (coarse) and
cross sections (fine-grained),
1 at 2km that 1s “identical+”

NOvVA Segmented 1 that 1s “identical” but moves,

Scintillator plus fine-grained MINERVA 1n

almost same beam

12 July 12007
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Remainder of Talk

* v, disappearance
— K2K Near Detector Analysis and Result
— MINOS Near Detector Analysis and Result

* v, Appearance
— K2K Result

— MINOS, NOvA, T2K, OPERA Sensitivity and Background
Comparison

* What will we need to take advantage of more statistics?
— Hadron Production Experiments
— Dedicated Cross Section Measurements

« Reward for working hard: combining NOvA and T2K
— Mass Hierarchy

12 July 12007 Debbie Harris, Conventional Neutrino Beams || 23



Reminder from Nakaya’s Lecture I

K2K Neutrino Energy E, Reconstruction

CC quasi elastic (QE) CC inelastic

v,tn—pu+p n
. H:WEH*F;L} VTl — U +p+T

P
myE, —mfl/z

— 5
E, = - 5 - 4.5
my —E, +n,, cos
= H llp H *'-w-'* 6§ inelastic

l.i-.l. s
a 23
Rate(Ev,Near) —> ¢(Ev,Near) |'—=' 2.6
2
G(QE), 6(nonQE)
i
a5

U0 051 152 253 354 455

12 July Reconstructed Ev (GeV)



Constraining Cross Section Model 1n

V _
l\/H

K2K Near Detector

1-ring events

E = Lk at 1kT
W+ Q m\ _E,u + p,u COS 6(1 L3 [ : -
nTT T~ p S2000}
(N F
V - 8 :
'~ : 51000}
non- - :
N QE You can e |
W*_n derive this... - 0g 1 2
P A" \p p.(GeV/c)
S 800f 1 1 ]
oEEl 1200 1 200,
;-5; E 400 mgﬁ%ﬁi‘ﬁ 100&
% > s %9 1 28 T 2T
pu (GeVic) py (GeVic) py (GeVic)

heprgx49600032

1 track Debbie Harris, Convetrﬁ%(r;’a Neutrino Bea;nstﬁaCk non-qe
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Am, MeV“N

10

10 |
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% sin220= 1.0

-4

Measurement of vV, >V, survival in K2K

Use both Number of events + Spectrum shape

-1

- Allowed regions

- Best fit parameters
i (in physical region)

- Am? = (2.76 £ 0.36)x103eV?

N

68%

99%

. | | | | | |

0 02 0.4 06 0.8 1

sin?(20)
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Measurement of vV, >V, survival in MINOS

g T e e T I T ey T Mean 1269
L% 6000 e ®  Data PDF cutat-0.1 RMS  5.564 9 [
s i MC PDF cutat 0.1 % i RMS 6.966
. i . B ot Qo 151 i | ¢ ]
a - "5 i » 7]
Z 4000 * — © \§ H
- —5 m il
4y LE-10 &H- -HH- ‘ H
; LE-10 -
I Tees,., | [ ]
_-I “ﬂ“m““'m | | |
Ou--'————— et O_....|....|....|....|...._
0 5 10 15 20 25 0 5 10 15 20 25
MINOS PRELIMINARY Energy (GeV) MINOS PRELIMINARY Energy (GGV)
See 10%-40% data-MC differences in near detector:
how to extrapolate to Far?
Error envelopes include uncertainties in cross-sections, beam and detector
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Near Detector Tuning at MINOS

e By taking data at several horn
currents and target positions,
MINOS isolated the problem
to Hadron Production Model

O = pions focused by horns

= . . : 40¢ . ; —
30F LE-10/170kA | _ E LE-10/185kA |
o * Data 3 = ]
20; Fluka05 MC. 1 20 E
10;_ —— Full MC Tuning _; 10;_ _;
O §1I£==—- ] §1: — ._;
o o 5 10 15 20 0 5 10 15 20
{w] - . — T
"o 40F LE-10/200kA | 89f PME/200kA |
~ 30F 3 60p E
S 20
© 10F . 3 20F 3
9 l_s:: ] _; ;_5:__ — = _;
S 0 5 10 15 20 0 5 10 15 20
U>J 80F pHE/200kA | 6;_ | | Horn off |
60F 3 4 ]
40f 1 ]
20F 3 2 =
l-s_: IIIIIIIIIIIIIIIIII —: 1°-5_—' IIIIIIIIIIIIIIIIII =
31_ E 51: —
0 5 10 15 20 0 5 10 15 20
Reconstructed E, (GeV)



MINOS v, Systematic Errors

« Systematic shifts in the fitted parameters are computed using MC “fake
data” samples for Am?=2.7x10-3 ¢V? and sin?26=1.0

 The uncertainties considered and shifts obtained:

Preliminary Uncertainty Shift in Am® Shift in

(103 eV?) sinZ20

Near/Far normalization 4% 0.050 0.005
Absolute hadronic energy scale £11% 0.060 0.048
NC contamination £50% 0.090 0.050
All other systematic uncertainties 0.044 0.011
Total systematic (summed in quadrature) 0.13 0.07
Statistical error (data) 0.36 0.12

« Magnitude of systematic error is ~40% of statistical error for Am?

« Several systematic uncertainties are data driven — improve with more

data and study Chris Smith, FNAL Seminar
12 July 12007 Debbie Harris, Conventional Neutrino Beams || 29



MINOS v, Survival Results

60— L
505_ Beam Matrix Unoscillated _E 40
N NDFit Unoscillated .
% 40 :_ Beam Matrix Best Fit _:
Q B NC Background ] 35
) 30:_ ——— MINOS Data _: o
ch - ] (&)
> ] ~
W 20 . > 3.0
: R
10 + 4 I%—*— 1 ~ —
C ® - N
= ¥ 25
% 5 T30 S
Reconstructed E, (GeV) <
2 2.0
1.5 .
2 [ ‘l‘ ‘ —— ] 1.5
e ro | [ .
s
05 .
8 Beam Matrix Best Fit .
0 | NDFit Best Fit 1
i —— MINOS Data .
_0 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 7]
=0 5 10 15

Reconstructed E, (GeV)

N
o

* MINOS Best Fit
—— MINOS 90% C.L.
----------- MINOS 68% C.L.

—— SK90% C.L.
— SK(L/E)90% C.L.

.......
» .,

& | I =
11 | I P Y | 11

02 04 06
sin(20,.)

Am3,|=2.74 7% (stat + syst) x10 eV’

sin °26,, =1.00_, ,, (stat + syst)

Normalizat ion = 0.98
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Challenges to v, Appearance

Problem: looking for a v, in a beam of v,’s

. * v, charged current events
* Intrinsic beam v, 5

\Y Mo

— K decays M lost
4 K—mev, ~
Z
— u decays
T—U—EV,.V, T

N X
* Neutral Current events « v _charged current events

A9
~ Y =~ _
. K/ ©
— Z
B, T
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Probabilities

far_¢ G P(V _)V)g far_l_B

far

¢=flux, o= cross section g=efficiency M=mass
N far B
4, 0, EM

far

P(v,—>v,)=

far

B.,,= Backgrounds at far detector, from any flux

far Z¢ (P)G ‘9 Ivlfar

i=y.6

12 July 12007 Debbie Harris, Conventional Neutrino Beams ||
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Probabilities, continued

éP 2 (N far +(éBfar) ) N far Bfar ,
(Pj (¢, 0, 6M )’ (¢V o, éx 71009, 0,8

P (¢v O-vx ‘S‘XI\/I far)2 ¢v GV &
2 Regimes:
Problem:
N. >B Don’t always know a priori
far far : : .
which regime you are in
\ P Bfar ---depends on Am?,

---depends on sin?20,

12 July 12007 Debbie Harris, Conventional Neutrino Beams ||
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(é]:)j _ ( far ( far) )‘l'(Nfar_Bfar) P n Vy n Vy

33



Near Detector Strategy
By = Z ¢ (P)Gv ExM oy

i=pu,e
Backgrounds come from several sources

near Z near VI near

=€
Build near detector with same ¢

Z . far (P)G g. Ivlfar
B — I=p,e

far near
near VI neal’

|,ue

Simulations better at predicting ratios absolute levels

N v far
far near,i

i=p,e ¢V near O, &ix Ivlnear

Gvi Eix M far

12 July 12007 Debbie Harris, Conventional Neutrino Beams || 34



Near Detector Strategy (cont’d)

Je e

« Underlying problem: fluxes are different

¢ far
far _IdE ZNnearl(E )(¢V| ](E )L

I=p.e v. near

« But ratios don’t cancel everything

— Near detector: line source, far detector: point source

— But even 1f that is solved, still v,CC oscillations

» All of these terms are functions of energy

— Uncertainties in energy dependence of cross sections
translate into far detector uncertainties...

12 July 12007 Debbie Harris, Conventional Neutrino Beams || 35



Search for v —v, oscillation in K2K

As a result,

# of expected BG

1.63 events
(1.25 from v, & 0.38 from beam V)

# of observed events 1 event

Signal candidate event

* Su}Per Kumiokcndeizt

RUN #
SUBRUN
EVENT#

TIME

TOT PE:
*l MAX PE:
MNMHIT :
ANT-PE:
RMNT-MX:

21858

# 57
Surs soos e - | RUNG: 21858

23:40:28

27 | EVENT: 2240771

NMHITA:

B 266.7MeV
"o | By 170.8MeV
Qyy: 22.5 deg.
My, 83.1MeV/c?

20,/00/00:No¥et: NoYet
20/00/00:No¥et: NoYet
90,/00/00: NoYet: NoYet
90,/00/00: NoYet : NoYet
90 UD/DD NoYet: HoYet
!R= 0:NoYet
: PHI : GOOD
10 28 -3. 18 -0.23:0. 218
CANG : RTOT : AMOM : MS

Comnt;

TRG ID
T diff.
FEVSK

EunMODE : NORMAL

00000011

SKGPS: 1046702427 s Slide courtesy Y. Hayato
EN: 75935P: 0

SO P FETE T : ,

GPEDIF: o.62us ponventional Neutrino Beams Il

s1022001 | Though, this event looks like multi-ring...
nioh YK/LW f

Bove: 01 07707 0/ 0)
CT:1075273452
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Search for v —v, oscillation in K2K

Expected # of electron candidates (Ngy)

N = NE(Am?)+NEL L NS (sid20, Am?)

1 BEAMwv 0SC v
~10 =
s |
o | Expected BG: 1.63
g Observed: 1
-2
10 | .. .
upper limit on sin?26,e
B (90% CL)
o 3 0.18@AM?=2.8x10-3eV/?2
= ( 0.25@Am?=2.0x103eV?
:jjjjjjjji:jﬁ:jﬁj:jggg;@:g:jﬁjjjjjijjjjj | jjjjjjjjjjjjjjjjjjjjjjjjjjj}jjjjj:j 0.16@AmM?=3.0x103e¢V?)
_4' //////// ; IQOTCLI! //// C’Hééiﬂl/ihiit
10 SUFE
0 010203040506070809 1 Slide courtesy Y. Hayato
sin®20
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Search for v —v, oscillation in MINOS

 How to discriminate between electrons and n=p™?
— Longitudinal, transverse event shape...

 How to discriminate between electrons and 1°?

— Less obvious in MINOS;\;gsc =
L NC

o 10 oo Neural Net MC
: Svsce example
L_; 10 —0 = e Oscillation
3 E -I‘}EI: . parameters:
g IF E sin*(20,3) = 0.1
Z . EI N [Amg,[* = 2.7x107eV?

10050 02 04 06 08 1 12 sin?(20,;) = 1

Neural Net Particle 1D

— 2
v, CC NC v bheam |y CC Total vose |° POT = 16x1020 (X 12

5.6 390 | 87 47 580 | 29.1 what has already
lected)

col
12 July 12007 Debbie Harris, Conventional Neutrino Beams
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Today’s signal 1s tomorrow’s background...

* OPERA: main goal is to see v_ CC events through t—e
decay channel, so should be sensitive ta

Combined fit of E,, E,;s, (Pt)nmiss

|_: Foe
— v,ov,
0,16
————— v, beam cont. 0.14 | | | |
4 L .
VL[ -V, 0,12 .\"‘\’\
_._.,; ----- NC 0,1 -"'\
Co 0,08 ]
- i [ —
e - 0,04
@ 0,02
| L b 1 4 6.75 3 135 19 203 27 33.8
= ] [[ 0134 | o112 | 0095 | o078 | 0067 | 0062 | 0056 | 005
— [ e T T
.-'h‘\ 0 ____“_I_ _________ | IR Lo T 1 T ™
e o 02 04 06 08 1 12 14 OPERA Sln22913 vs F)'::)'tilr S
.:vi Missing p;. (GeV) 9 - 3 9 - o
oy sin® 2015 | v.CC signal | 7 — ¢ v, CC — v, NC | v,NC | v.CC beam
f_]: 0.095 9.3 4.5 1.0 5.2 15

12 July 12007

5 years, 4.5x101°POT/year
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Sensitivity versus Time

* People writing proposals much prefer to be in the situation where you
have <1 event background.

* Then sensitivity oc time
* Note: v, searches are already at 1 or more background events:
— K2K: 1.6 background events per 102°

— MINOS: 3.6 background events per 102° POT
— OPERA: 13 background events per 1020 POT
* Need to improve
— Intrinsic y in the beam: use Off-axis trick
* v, peaked in energy. Electron neutrinos over a broad spectrum.

— v, CC/ NC event separation: use lower energy, or better detector,
or off axis beam (since NC events reconstruct with energy lower than the
peak)

— Statistics: more detector mass or proton power or both
Next Generation v, searches:

— T2K: 23 background events in 5-year run

— NOvVA: 19 background events in 6-year run
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How well do new designs do?

Total
Beam Back-
v,CC |NC v, |v.CC|ground |Signal | SN(S+B)

K2K o| 1.3 0.4 0 1.7 ~1 0.6
MINOS 56| 39 8.7| 47 58| 29.1 3.1
OPERA 1] 5.2 18| 4.5 28.7 10 1.6
T2K 1 9 13 0 23 103 9.2
NOVA* 0.5 7 11 0 18.5 148 11.5

Assume sin0,,=0.1, =0, *normal hierarchy, but not all same Am?

References: K2K PRL(96)2006, MINOS: Smith, FNAL Seminar

OPERA: JPhysG(29) 2003, T2K: Nakadaira v2006, NOvA:Shanahan,v2006
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How does MiniBooNE compare?

Total
v, Beam | v, Bk- S/
CC | NC v, | CC |grnd |Sgnl [(S+B)
Mini-
BooNE 23 89 229 0 358 163 | 7.1
K2K 0 1.3 04 0 1.7 ~110.6
MINOS 5.6 39 8.7 4.7 58 29.1 (3.1
OPERA 1 5.2 18 4.5 28.7 10 1.6
T2K 9 13 0 23 103 | 9.2
NOVA* 0.5 7 11 0 18.5 148 | 11.5 E,
2
®
MiniBooNE Signal assumes mixing angle is g
factor of ~20 lower than the that of the

other experiments
Reference: FNAL Seminar, April 2007

Total Background above
475MeV:

358 events

Total signal for 0.26%
probability:

163 events

* MiniBooNE data

-+ expected background
--- BG + best-fit oscillation
— v, background

v, background

See also Richard Van De Water’s Lecture 11
12 July 12007
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Now that we have reduced backgrounds
and increased mass. ..

 Remember, just because your simulation
says it 1s true, that doesn’t mean the
stmulation 1s right

* Need to measure neutrino interactions better

— What really comes flying out of the nucleus
when 1t is hit by a neutrino?

* Need to measure hadron production better

— What really comes flying out of the target when
it 1s hit by protons?
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v, Appearance Analysis

Summary: e
beam \as®
Event Samples are v 1*1\1 193
different = /
Near to .far., SO NC
Uncertainties
i 1
In cross sections m Sip 2
Won’t cancel CC <6
{3 SQ?&]}

Near Detector

If signal 1s small,
Worry about background

Prediction (v, flux and nc xsection), if signal 1s
Big, worry about signal cross sections
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beam
+ signal
Ve

NC

¥y CC

Far Detector

beam

Ve

NC

"r’u CC

Far Detector
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How much do cross section errors
cancel near to far?

« Toy analysis: start with old NOvVA detector simulation, which had

same v./NC ratio, mostly QE & RES signal events accepted, more v, CC/NC
accpeted

* Near detector backgrounds have ~3 times higher v cc!

« Assume if identical ND, can only measure 1 background number:
hard to distinguish between different sources

Process Events QE RES COH DIS § 0.014F --- Current o Errors
G u.mzf— ------ o Errors after MINERLA
oc/c 20% | 40% | 100% |[20% | & - o
& 001 — Statisticol (S0kt+Syr}
Signal v, | 175 | 55% | 35% |wi 10% | & ;0
sin?20,,=0.1 C
0.006F
NC 154 |0 [50% |20% |30% | ooosf
v,CC 36 |0 |65% |wi 35% | 0002k
S = el N T FEETE N N R SRR S
Beam v, 19.1 50% | 40% | n/i 10% 0 Q.01 0,02 0,03 0.04 0,05 0,06 0,07 0.08 0.09 0,1
5in"26,s

For large sin22613, statistical=8% Assume post-MINERVA, c’s known at:
AQE = 5%, ARES =5, 10% (CC, NC)

For small sin?2 tatistical=16°
or small s1n°20,; statistical=16% ADIS = 5%, ACOHy, = 20%
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Nuclear effects at MINOS

* Visible Energy in Calorimeter
1s NOT v energy!
» T absorption, rescattering
» final state rest mass

Ivsis: Nuclear Effects Studied in Charged Lepton
Toy MC ana ysis. Scattering, from Deuterium to Lead, at High

B 0nl — Stee! energies, but nuclear corrections may be
@ ---- Steel 30 less m abs. . .
5095 Steel 30 more m obs, ez different between e/p and v scattering
5 U e I s
©0.92 P e v L
% (V)=] Sp—— e 2 * ----- P e 03F w 0.3
SOBBH < :
E, 0.86 "‘—-— £0.25 ED.?E: —— MINDS (16220 POT)
.84l ' S 0.2 5 o
2 4 6 8 10 12 14 16 18 20 s e N
Neutrino Energy (GeV) 50.15 Bo.15
[l L e T T P
£ s e T
I G S p——— S 0] — MINOS (7.4e20 POT) 3 o ——
5098 Graphite no m abs. - S SREEErS MINOS+0,,, (nucl) AM N R MINOS + Gy { 1) AN
50,96 _______ Lead no 7 abs. . _+_-+l_+__+____r__.+._i__,;, G005 e MINOS + 0, {nucl) PM L—iD.U'J o MINOS 40 { nucl) #i
6094 _+__+_—+— Foge + + I3 E
50.92} ., ... e e +H 8 9276 78 2 22 24 26 28 3 & 13 16 18 2 22 24 2.5 28 3
L 09 s, e —— ) SR Am® (x107%eV?) am? (2107}
)]
5088
20.86
0.84 b '
2 4 6 8 10 12 14 16 18 20
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Dedicated Neutrino Interaction Measurements

MINERVA: exclusive final
state measurements, 3 nuclear
targets, to run in NuMI
beamline 1n time for MINOS
and NOvA (and T2K’s) data

o« T2K 280m Off axis detector: inclusive
¥ measurements and some exclusive
states, water target

e SciBooNE: use SciBAR i1n
MiniBooNE beam to look at anti-v’s
NOW!
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Need Dedicated Hadron Production

Experiments!

Example: NuMI: Absolute rates known only to 20% in high energy tail,
Far/near ratio known better, but still only at 5% ratio without MIPP

Absolute Rate

Far to Near Comparison

) ].I:ID [ I [ LI I LI I I | | L | LI | LI | LI | i
= [ ] 7 L -
280 f — GFLUEA . _ - [ ——
-, ---- BMPT ] 3. . *
4 60 -~ MARS ] 213 : . = ]
5 | --- MALENSEK ks ]
S 40 | ; 3 ;
=S ] = s GFLUEA ]
=0 . —{.5 | &« BMPT ]
= : ] [ o MARS ]
= I S e ) F A MATENSEK ]
G‘ 1 I_ LT =  h i L " | | | P 1
15 20 25 30 0 5 10 15 20 25 30
E, (GeV) E, (GeV)
= S I ! - T T T T T T
= 40 . =
» - 5 20 - ]
=4 2 2 ¥ .1 " 4 ;
b B B R B . £ 0 TETIRT =
5-20 slel, . ° ] S .G :
o X o 3 = s BMPT
=0 b E =-20 - o MARS -
SV | | | | | ] 5 | & MALENSEK
L 1 L _l 1 1 1 .r—l - 1 1 L I 1 L I 1 1 I 1 L I 1 L 1 I 1 1
10 15 20 25 30 0 3 10 15 20 25 30
E, (GeV) E, (GeV)
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Hadron Production Experiment
Case Study: MIPP

FNAL expt E907,
ran with NuMI Target for MINOS
Will run with thin targets as wel

[ mkp(+20 GeV) + Carbon 2% | /Y N ! ey
. 38 . Sl S _,.-'_-:2' g
Taek | Jolly | NN T '
3 34t _ all NN Y ‘J )

RICH

w 34 Green 2, / PID: 20-80 GeV/c
Zaa Giant Wire » al—- € R
= z:z Magner Chambersl_ I:
24;— -
ziz Rosie Magnet Wire Chambers S [
E * .
5 L&Y
165 ) f/w -
o : HCAL
EMCAL
HARP is CERN H.P.
_ experiment that
. . SE— Positive tracks IOOked at K2K al’ld
Figures courtesy M.Messier | T VT MiniBooNE targets

£ 1GeVie)
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What should you take away from
this course?

because the Monte Carlo
says so. Don’t be caught by
surprise... the other
measurements you need
(cross-sections, hadron
production, test beam) may
take years.

Experimentalist Theorist

Beams Conventional Neutrino Beams aren’t flavor eigenstates, and
Beams are a critical and contamination depends on which
challenging problem. detectors your friends use.
Need targets, horns, decay
regions and lots of Design
work!

Systematics | Don’t believe i1t’s true just | You can’t do % or better

measurements without spending all
your time worrying about
systematics.
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[Last Words...

Experimentalist

Theorist

V, appearance

Find a may to make
experimental efforts
compliment each other.

Help the
experimentalists do
this, but only in a way
that 1s realistic!!!

v, disappearance

Don’t ignore the difficulty of

this measurement if it 1s
important!

Tell experimentalists
again how critical it is
to know 1f 0, 1s 45°

V. appearance

Everything comes to those

who can wait.

Don’t assume you
know the answer.
And what if the
answer 1s not what
you expected?
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