
Electroweak interactions of quarks (one generation)

Left-handed doublet

I3 Q Y = 2(Q − I3)

Lq =

(
u

d

)

L

1
2

−1
2

+2
3

−1
3

1
3

two right-handed singlets

I3 Q Y = 2(Q − I3)

Ru = uR

Rd = dR

0

0

+2
3

−1
3

+4
3

−2
3
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Electroweak interactions of quarks

CC interaction

LW -q =
−g

2
√

2

[
ūeγ

µ(1 − γ5)d W +
µ + d̄γµ(1 − γ5)u W−

µ

]

identical in form to LW -ℓ: universality ⇔ weak isospin

NC interaction

LZ-q =
−g

4 cos θW

∑

i=u,d

q̄iγ
µ [Li(1 − γ5) + Ri(1 + γ5)] qiZµ

Li = τ3 − 2Qi sin
2 θW Ri = −2Qi sin

2 θW

equivalent in form (not numbers) to LZ-ℓ
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Trouble in Paradise
Universal u ↔ d , νe ↔ e not quite right

Good:

(
u
d

)

L

→ Better:

(
u
dθ

)

L

dθ ≡ d cos θC + s sin θC cos θC = 0.9736 ± 0.0010

“Cabibbo-rotated” doublet perfects CC interaction (up to small
third-generation effects) but ⇒ serious trouble for NC

LZ-q =
−g

4 cos θW
Zµ {ūγµ [Lu(1 − γ5) + Ru(1 + γ5)] u

+d̄γµ [Ld(1 − γ5) + Rd(1 + γ5)] d cos2 θC

+s̄γµ [Ld(1 − γ5) + Rd(1 + γ5)] s sin2 θC

+d̄γµ [Ld(1 − γ5) + Rd(1 + γ5)] s sin θC cos θC

+ s̄γµ [Ld(1 − γ5) + Rd(1 + γ5)] d sin θC cos θC}
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Strangeness-changing NC interactions highly suppressed!

K
+

+
s̄ d̄

u

¯

BNL E-787/E-949 has three
K+ → π+νν̄ candidates, with
B(K+ → π+νν̄) = 1.5+1.3

−0.9 × 10−10

Phys. Rev. Lett. 93, 031801 (2004)

(SM: 0.78 ± 0.11: U. Haisch, hep-ph/0605170)
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Glashow–Iliopoulos–Maiani

two LH doublets:

(
νe

e−

)

L

(
νµ

µ−

)

L

(
u
dθ

)

L

(
c
sθ

)

L

(sθ = s cos θC − d sin θC )
+ right-handed singlets, eR , µR , uR , dR , cR , sR

Required new charmed quark, c

Cross terms vanish in LZ-q,

qi

qi

ig

4 cos W

[(1 5)Li + (1 + 5)Ri] ,

Li = τ3 − 2Qi sin
2 θW Ri = −2Qi sin

2 θW

flavor-diagonal interaction!
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Straightforward generalization to n quark doublets

LW -q =
−g

2
√

2

[
Ψ̄γµ(1 − γ5)OΨ W +

µ + h.c.
]

composite Ψ =




u
c
...
d
s
...




flavor structure O =

(
0 U
0 0

)

U: unitary quark mixing matrix

Weak-isospin part: Liso
Z-q =

−g

4 cos θW
Ψ̄γµ(1 − γ5)

[
O,O†

]
Ψ

Since
[
O,O†

]
=

(
I 0
0 −I

)
∝ τ3

⇒ NC interaction is flavor-diagonal

General n × n mixing matrix U: n(n − 1)/2 real ∠, (n − 1)(n − 2)/2 complex phases

3 × 3 (Cabibbo–Kobayashi-Maskawa): 3 ∠ + 1 phase ⇒ CP violation
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Successful predictions of SU(2)L ⊗ U(1)Y theory:
neutral-current interactions
necessity of charm
existence and properties of W± and Z 0

+ a decade of precision EW tests (one-per-mille)

MW 80 398 ± 25 MeV
ΓW 2 140 ± 60 MeV

MZ 91 187.6 ± 2.1 MeV
ΓZ 2495.2 ± 2.3 MeV

σ0
hadronic 41.541 ± 0.037 nb

Γhadronic 1744.4 ± 2.0 MeV
Γleptonic 83.984 ± 0.086 MeV
Γinvisible 499.0 ± 1.5 MeV

Γinvisible ≡ ΓZ − Γhadronic − 3Γleptonic

light ν : Nν = Γinvisible/Γ
SM(Z → νi ν̄i ) = 2.994 ± 0.012 (νe , νµ, ντ )

Chris Quigg (Fermilab) Neutrinos in Electroweak Theory ν School · July 2007 77 / 142



Three light neutrinos
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νµN → µ− + anything: influence of W propagator

d2σ

dxdy
=

2G 2
F MEν

π

(
M2

W

Q2 + M2
W

)2 [
xq(x ,Q2) + xq̄(x ,Q2)(1 − y)2

]

q(x ,Q2) =
uv (x ,Q2) + dv (x ,Q2)

2
+

us(x ,Q
2) + ds(x ,Q

2)

2

+ss(x ,Q
2) + bs(x ,Q

2)

q̄(x ,Q2) =
us(x ,Q

2) + ds(x ,Q
2)

2
+ cs(x ,Q

2) + ts(x ,Q
2),

(EHLQ) . . . isoscalar nucleon
x = Q2/2Mν y ≡ ν/Eν ν ≡ Eν − Eµ
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νN → µ+ . . . Cross Sections

CTEQ6

EHLQ

EHLQ, unevolved

CTEQ6

EHLQ

EHLQ, unevolved
HERAHERA

M. H. Reno
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νN → µ+ . . . Interaction Lengths

Solar diameter

Lunar diameter

Earth diameter
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νe cross sections . . .

10-39

10-37

10-35

10-33

10-31

102 104 106 108 1010 1012

σ
 [

c
m

2
]

E
ν
 [GeV]

At low energies: σ(ν̄ee → hadrons) > σ(νµe → µνe) > σ(νee → νee) >
σ(̄(νee → ν̄µµ) > σ(ν̄ee → ν̄ee) > σ(νµe → νµe) > σ(ν̄µe → ν̄µe)
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Measurement Fit |O
meas

−O
fit
|/σ

meas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α
(5)

0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ
0

41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA
0,l

0.01714 ± 0.00095 0.01645

Al(Pτ
)Al(Pτ
) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA
0,b

0.0992 ± 0.0016 0.1038

AfbA
0,c

0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin
2
θeffsin

2
θ

lept
(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

LEP Electroweak Working Group, Winter 2007
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Why a Higgs boson must exist

� Role in canceling high-energy divergences
S-matrix analysis of e+e− → W +W−

(a) (b)

(c)
(d)

e+
e–

e– e–

e–

e+ e+

e+

W–

W+

W+

W+ W+

W–

W–

W–

γ

ν

Z

H

Individual J = 1 partial-wave amplitudes M(1)
γ , M(1)

Z , M(1)
ν have

unacceptable high-energy behavior (∝ s)
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. . . But sum is well-behaved

“Gauge cancellation” observed at LEP2 (Tevatron)

0
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20

30

160 180 200

√s (GeV)

YFSWW/RacoonWW
no ZWW vertex (Gentle)
only νe exchange (Gentle)

LEP
PRELIMINARY

17/02/2005

0

10

20

30

160 180 200

√s (GeV)

σ W
W

 (
pb

)
YFSWW/RacoonWW
no ZWW vertex (Gentle)
only νe exchange (Gentle)

LEP
PRELIMINARY

17/02/2005
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J = 0 amplitude exists because electrons have mass, and can be
found in “wrong” helicity state

M(0)
ν ∝ s

1
2 : unacceptable HE behavior

(no contributions from γ and Z )

This divergence is canceled by the Higgs-boson contribution

⇒ Heē coupling must be ∝ me ,

because “wrong-helicity” amplitudes ∝ me

If the Higgs boson did not exist, something else would have
to cure divergent behavior
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If gauge symmetry were unbroken . . .

no Higgs boson

no longitudinal gauge bosons

no extreme divergences

no wrong-helicity amplitudes

. . . and no viable low-energy phenomenology

In spontaneously broken theory . . .

gauge structure of couplings eliminates the most severe
divergences

lesser—but potentially fatal—divergence arises because the
electron has mass . . . due to the Higgs mechanism

SSB provides its own cure—the Higgs boson

Similar interplay & compensation must exist in any acceptable theory
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EWSB: another path?

Modeled EWSB on Ginzburg–Landau description of
superconducting phase transition;

. . . had to introduce new, elementary scalars

GL is not the last word on superconductivity:
dynamical Bardeen–Cooper–Schrieffer theory

The elementary fermions – electrons – and gauge
interactions – QED – needed to generate the scalar bound
states are already present in the case of superconductivity.

Could a scheme of similar economy account for EWSB?
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SU(3)c ⊗ SU(2)L ⊗ U(1)Y + massless u and d

(treat SU(2)L ⊗ U(1)Y as perturbation)

mu = md = 0:
QCD has exact SU(2)L ⊗ SU(2)R chiral symmetry.

At an energy scale ∼ ΛQCD, strong interactions become
strong, fermion condensates appear, and

SU(2)L ⊗ SU(2)R → SU(2)V

; 3 Goldstone bosons, one for each broken generator:
3 massless pions (Nambu)
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Broken generators: 3 axial currents; couplings to π measured by pion
decay constant fπ.
Turn on SU(2)L ⊗ U(1)Y : EW gauge bosons couple to axial currents,
acquire masses of order ∼ gfπ.

M2 =




g2 0 0 0
0 g2 0 0
0 0 g2 gg ′

0 0 gg ′ g ′2




f 2
π

4
(W +,W−,W3,A)

same structure as standard EW theory.

Diagonalize: M2
W = g2f 2

π /4, M2
Z = (g2 + g ′2)f 2

π /4, M2
A = 0, so

M2
Z

M2
W

=
(g2 + g ′2)

g2
=

1

cos2 θW

Massless pions disappear from physical spectrum, to become longitudinal

components of weak bosons. MW ≈ 30 MeV/c2 No fermion masses . . .
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Origin of fermion masses: quarks & charged leptons

LYukawa = −ζ ij
d (L̄iφ)dRj − ζ ij

u (L̄i φ̄)uRj + h.c. ,

ζu,d : 3 × 3 complex matrices i , j : generation indices
Li : LH quark doublets uRj , dRj : RH quark singlets

Mass eigenstates: ζdiag
f = U f

Lζf U
f †
R

f = u, d : up-like or down-like quarks; U f
L,R: unitary matrices

Define uL = (uL, cL, tL) dL = (dL, sL, bL)

L(q)
CC = − g√

2
ūL γ

µVdLW
+
µ + h.c.

V : quark mixing (Cabibbo–Kobayashi–Maskawa) matrix
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V ≡ Uu
LUd†

L =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




Experiment tells us . . .

|V | ≡




|Vud | |Vus | |Vub|
|Vcd | |Vcs | |Vcb|
|Vtd | |Vts | |Vtb|



 =




0.974 0.227 0.004
0.227 0.973 0.042
0.008 0.042 0.999





The Higgs scalar is the only element of the standard
model that distinguishes among the generations.

Veltman: It knows something we do not know.
Chris Quigg (Fermilab) Neutrinos in Electroweak Theory ν School · July 2007 92 / 142



Yukawa couplings (mass eigenstates) ζdiag
f

10-6

10-5

10-4

10-3

10-2

10-1

100

M
a
s
s
/
W
e
a
k
S
c
a
le

charged leptons

up quarks

down quarks

e

u
d

c

s

t

b

m

t
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Quark Mixing
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Components: |Vuα|2, etc. Application to cosmic ν: Barenboim & CQ, Phys. Rev. D67, 073024
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Origin of fermion masses: neutrinos

Define ν = (ν1, ν2, ν3) ℓL = (eL, µL, τL)

L(q)
CC = − g√

2
ν̄ γµV†

ℓLW
+
µ + h.c. ,

V: ν mixing (Pontecorvo–Maki–Nakagawa–Sakata) matrix

V =




Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3




Convention: ν1, ν2: solar pair, m1 < m2

ν3 separated by ∆m2
atm; above or below?
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Absolute scale of neutrino masses is not yet known

Normal spectrum Inverted spectrum

m2
2 − m2

1 = ∆m2
⊙ = 7.9 × 10−5 eV2 m2

3 − m2
1 = ∆m2

atm = 2.5 × 10−3 eV2

Astronomical data:
∑

i mνi
< 0.62 eV

If Dirac masses, Yukawa couplings ∼< 10−11
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Experiment tells us . . .

|V| =




0.79− 0.88 0.47 − 0.61 < 0.20
0.19− 0.52 0.42 − 0.73 0.58 − 0.82
0.20− 0.53 0.44 − 0.74 0.56 − 0.81



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Neutrino Mixing (representative values, θ13 = 10◦)
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Application to cosmic ν: Barenboim & CQ, Phys. Rev. D67, 073024 (2003)
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Varieties of neutrino mass: Dirac mass

Chiral decomposition of Dirac spinor:

ψ = 1
2(1 − γ5)ψ + 1

2(1 + γ5)ψ ≡ ψL + ψR

Dirac mass connects LH, RH components of same field

LD = −D(ψ̄LψR + ψ̄RψL) = −Dψ̄ψ

=⇒ mass eigenstate ψ = ψL + ψR

(invariant under global phase rotation ν → e iθν,
ℓ→ e iθℓ, so that lepton number is conserved)
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Varieties of neutrino mass: Dirac mass

Add RH neutrino NR to the standard-model spectrum

NR: SU(2)L singlet with Y = 0, so sterile

L(ν)
D = −ζν

[
(L̄ℓφ̄)NR + N̄R(φ̄†Lℓ)

]
→ −mD

(
ν̄LNR + N̄RνL

)

mD = ζνv/
√

2

Some argue that ζν ∼< 10−11 is unnatural, while the
range ζt ≈ 1 to ζe ≈ few × 10−6 is merely

puzzling. All Dirac masses involve physics beyond
the standard model.
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Varieties of neutrino mass: Majorana mass

Neutrinos: no color, no Q: their own antiparticles?
Majorana2 fermions

Charge conjugate of RH field is LH: ψc
L ≡ (ψc)L = (ψR)c

Majorana joins LH, RH components of conjugate fields

−LMA = A(ν̄c
RνL + ν̄Lν

c
R) = Aχ̄χ

−LMB = B(ν̄c
LνR + ν̄Rν

c
L) = Bω̄ω

for which the mass eigenstates are

χ ≡ νL + νc
R = χc = νL + (νL)

c

ω ≡ νR + νc
L = ωc = νR + (νR)c

2Escapist Literature: Ettore Majorana vanished without a trace from a ferry between
Sicily and the Italian mainland. Leonardo Sciascia has written a fictional account that
Majoranas colleagues denounced as scurrilous fantasy. Italian original: La Scomparsa di

Majorana, English translation: The Moro Affair and the Mystery of Majorana.
Chris Quigg (Fermilab) Neutrinos in Electroweak Theory ν School · July 2007 101 / 142



Lepton number violation

Majorana ν: no conserved additive quantum number

LM violates lepton number by two units

⇒ Majorana ν can mediate ββ0ν decays

(Z ,A) → (Z + 2,A) + e− + e−

Detecting ββ0ν would offer decisive
evidence for Majorana nature of ν

Active νL mass generated by I = 1 Higgs with vev or effective
operator containing two I = 1

2
Higgs combined to transform as I = 1.
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Assessment

SU(2)L ⊗ U(1)Y : 25 years of confirmations

neutral currents;

W ±, Z 0

charm

(+ experimental guidance)

τ , ντ

b, t

+ experimental surprises

narrowness of ψ, ψ′

long B lifetime; large B0–B̄0 mixing

large B0–B̄0 mixing

heavy top

neutrino oscillations
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10 years precise measurements: no significant deviations

Quantum corrections tested at ±10−3

No “new physics” . . . yet!

Theory tested at distances from 10−17 cm to ∼ 1022 cm

origin Coulomb’s law (tabletop experiments)

smaller

{
Atomic physics → QED
high-energy expts. → EW theory

larger Mγ ≈ 0 in planetary . . . measurements

Is EW theory true? Is it complete ??
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Challenge: Understanding the Everyday (bis)

What would the world be like, without a (Higgs)
mechanism to hide electroweak symmetry and give
masses to the quarks and leptons? Consider the

effects of all the SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge
symmetries.

Consider the effects of all the

SU(3)c ⊗ SU(2)L ⊗ U(1)Y interactions!
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With no Higgs mechanism . . .

Quarks and leptons would remain massless

QCD would confine the quarks in color-singlet hadrons

N mass little changed, but p outweighs n

QCD breaks EW to EM, gives (1/2500×observed)
masses to W , Z , so weak-isospin force doesn’t confine

Rapid! β-decay ⇒ lightest nucleus is n; no H atom

Some light elements in BBN (?), but ∞ Bohr radius

No atoms (as we know them) means no chemistry, no
stable composite structures like solids and liquids

. . . the character of the physical world would be
profoundly changed
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Parameters of the Standard Model

3 coupling parameters αs , αEM, sin
2 θW

2 parameters of the Higgs potential
1 vacuum phase (QCD)
6 quark masses
3 quark mixing angles
1 CP-violating phase
3 charged-lepton masses
3 neutrino masses
3 leptonic mixing angles
1 leptonic CP-violating phase (+ Majorana . . . )

26+ arbitrary parameters
parameter count not improved by unification
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The EW scale and beyond

EWSB scale, v = (GF

√
2)−

1
2 ≈ 246 GeV, sets

M2
W = g2v2/2 M2

Z = M2
W / cos2 θW

But it is not the only scale of physical interest

quasi-certain: MPlanck = 1.22 × 1019 GeV

probable: SU(3)c ⊗ SU(2)L ⊗ U(1)Y unification scale ∼ 1015−16 GeV

somewhere: flavor scale

How to keep the distant scales from mixing in the face of quantum
corrections?

OR
How to stabilize the mass of the Higgs boson on the electroweak scale?

OR
Why is the electroweak scale small?

“The hierarchy problem”
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Higgs potential V (φ†φ) = µ2(φ†φ) + |λ| (φ†φ)2

µ2 < 0: SU(2)L ⊗ U(1)Y → U(1)em, as

〈φ〉0 =

(
0√

−µ2/2|λ|

)
≡




0

(GF

√
8)−1/2

︸ ︷︷ ︸
175 GeV




Beyond classical approximation, quantum corrections to
scalar mass parameters:

++

J=1 J=1/2 J=0

m
2
(p

2
) = m

0

2
+
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Loop integrals are potentially divergent

m2(p2) = m2(Λ2) + Cg 2

∫ Λ2

p2

dk2 + · · ·

Λ: reference scale at which m2 is known
g : coupling constant of the theory

C : coefficient calculable in specific theory

For mass shifts induced by radiative corrections to remain
under control (not greatly exceed the value measured on
the laboratory scale), either

Λ must be small, or

New Physics must intervene to cut off integral

Chris Quigg (Fermilab) Neutrinos in Electroweak Theory ν School · July 2007 110 / 142



But natural reference scale for Λ is

Λ ≈ MPlanck =

(
~c

GNewton

)1/2

≈ 1.22 × 1019 GeV

for SU(3)c ⊗ SU(2)L ⊗ U(1)Y

or

Λ ≈ MU ≈ 1015-1016 GeV for unified theory

Both ≫ v/
√

2 ≈ 175 GeV =⇒

New Physics at E ∼< 1 TeV
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δM2
H for 5-TeV cutoff
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Only a few distinct scenarios . . .

Supersymmetry: balance contributions of fermion
loops (−1) and boson loops (+1)
Exact supersymmetry,

∑

i= fermions
+bosons

Ci

∫
dk2 = 0

Broken supersymmetry, shifts acceptably small if
superpartner mass splittings are not too large

g 2∆M2 “small enough” ⇒ M̃ ∼< 1 TeV/c2
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Only a few distinct scenarios . . .

Composite scalars (technicolor): New physics arises on
scale of composite Higgs-boson binding,

ΛTC ≃ O(1 TeV)

“Form factor” cuts effective range of integration
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Only a few distinct scenarios . . .

Strongly interacting gauge sector: WW resonances,
multiple W production, probably scalar bound state
“quasiHiggs” with M < 1 TeV
Spontaneously broken global symmetries ;

pseudo-Nambu–Goldstone bosons
◮ Higgs boson would be massless if Nambu–Goldstone boson

protected against large quantum corrections
◮ Global symmetry must be large enough that left-over NGBs remain

after some provide longitudinal components of massive gauge bosons
◮ Explicit symmetry breaking needed for MH 6= 0

Extra gauge bosons (MW ′ ≈ 4πMH), enlarged fermion multiplets
cancel quadratic divergences in δM2

H

“Little Higgs” effective theories, Λ ≈ (4π)2MH
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Only a few distinct scenarios . . .

Or maybe the problem is with (our understanding of)
gravity, not with the electroweak theory?

Large extra dimensions
Arkani-Hamed, Dimopoulos, Dvali, Phys. Lett. 429, 263 (1998)

Universal extra dimensions
Appelquist, Cheng, Dobrescu, Phys. Rev. D64, 035002 (2001)

Warped extra dimensions
Randall & Sundrum, Phys. Rev. Lett. 83, 3370, 4690 (1999)
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Higgs boson: the missing element of electroweak theory
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Experimental clues to the Higgs-boson mass
Sensitivity of EW observables to mt gave early indications for massive top
Quantum corrections to SM predictions for MW and MZ arise from
different quark loops

b̄

t

W
+

W
+

t̄

t

Z
0 Z

0,

. . . alter the link M2
W︸︷︷︸ = M2

Z

(
1 − sin2 θW

)
︸ ︷︷ ︸

(1−∆ρ)

(80.398 ± 0.025 GeV)2 (80.939 GeV)2

where ∆ρ ≈ ∆ρ(quarks) = 3GFm2
t /8π

2
√

2
Strong dependence on m2

t accounts for precision of mt estimates derived
from EW observables

Tevatron: δmt/mt ≈ 1.28%. . . Look beyond quark loops to next

most important quantum corrections: Higgs-boson effects
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Global fits to precision EW measurements

precision improves with time / calculations improve with time

LEP 2494.6 ± 2.7 MeV

m H = 60 – 1000 GeV

αs = 0.123 ±  0.006

m Z = 91 186 ±  2 MeV
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11.94, LEPEWWG: mt = 178 ± 11+18
−19 GeV/c2

Direct measurements: mt = 170.9 ± 1.8 GeV/c2
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H quantum corrections smaller than t corrections, exhibit more subtle
dependence on MH than the m2

t dependence of the top-quark corrections

∆ρ(Higgs) = C · ln
(

MH

v

)

MZ known to 23 ppm, mt and MW well measured

Top-Quark Mass   [GeV]

mt   [GeV]
140 160 180 200

χ2/DoF: 9.2 / 10

CDF 170.1 ± 2.2

D∅ 172.0 ± 2.4

Average 170.9 ± 1.8

LEP1/SLD 172.6 +  13.2172.6 −  10.2

LEP1/SLD/mW/ΓW 178.9 +  11.7178.9 −   8.6

W-Boson Mass  [GeV]

mW  [GeV]
80 80.2 80.4 80.6

χ2/DoF: 1.1 / 1

TEVATRON 80.429 ± 0.039

LEP2 80.376 ± 0.033

Average 80.398 ± 0.025

NuTeV 80.136 ± 0.084

LEP1/SLD 80.363 ± 0.032

LEP1/SLD/mt 80.360 ± 0.020

. . . so examine dependence of MW upon mt and MH
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68% CL

LEP1 and SLD

LEP2 and Tevatron (prel.)

Direct, indirect determinations agree reasonably
Both favor a light Higgs boson, . . . within framework of SM analysis.
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Fit to a universe of data
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Standard-Model MH ∼< 182 GeV at 95% CL
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Fit to a universe of data . . .

Within SM, LEP EWWG deduce a 95% CL upper
limit, MH ∼< 182 GeV/c2

Direct searches at LEP ⇒ MH > 114.4 GeV/c2,
excluding much of the favored region

Either the Higgs boson is just around the corner, or
SM analysis is misleading

Things will soon be popping!
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A Cautionary Note

Ab
FB , which exerts the greatest “pull” on the global fit

[slide 83], is most responsible for raising MH above the
range excluded by direct searches [slide 122].

Leptonic and hadronic observables point to different
best-fit values of MH

Many subtleties in experimental and theoretical
analyses

M. Chanowitz, Phys. Rev. Lett. 87, 231802 (2001); Phys. Rev. D66,
073002 (2002); hep-ph/0304199;
http://phyweb.lbl.gov/∼chanowitz/rpm-10-06.pdf

Introduction to global analyses: J. L. Rosner, hep-ph/0108195;
hep-ph/0206176
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M. Chanowitz RPM 10/26/06 20

&2 Distributions: Leptonic Asymmetries

A
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M. Chanowitz RPM 10/26/06 21

&2 Distributions: Hadronic Asymmetries

AH combined

AFB
b

AFB
c

QFB
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Tevatron, LHC measurements will determine mt

within 1 or 2 GeV
. . . and improve δMW to about 15 MeV

As the Tevatron’s integrated luminosity approaches
10 fb−1, CDF and DØ will explore the region of MH

not excluded by LEP

ATLAS and CMS will carry on the exploration of the
Higgs sector at the LHC;
could require a few years, at low mass;
full range accessible, γγ, ℓℓνν, bb̄, ℓ+ℓ−ℓ+ℓ−, ℓνjj , ττ
channels.
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Electroweak theory confronts experiment

G. Altarelli and M. Grünewald, “Precision Electroweak Tests of
the SM,” hep-ph/0404165.

F. Teubert, “Precision tests of the electroweak interactions,”
Int. J. Mod. Phys. A 20, 5174 (2005).

S. de Jong, “Tests of the Electroweak Sector of the Standard
Model,” PoS HEP2005, 397 (2006) [hep-ph/0512043].

.
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Details of Electroweak Theory . . .

For more, see my

“ Spontaneous symmetry breaking as a basis of
particle mass,” Rep. Prog. Phys. 70, 1019 (2007),
arXiv:0704.2232.

“The Electroweak Theory,” in Flavor Physics for the

Millennium: TASI 2000, edited by Jonathan L. Rosner
(World Scientific, Singapore, 2001), pp. 367;
hep-ph/0204104.

Gauge Theories of the Strong, Weak, and
Electromagnetic Interactions (Westview Press, 1997)
http://www.perseusbooksgroup.com/perseus/book detail.jsp?isbn=0201328321

Chris Quigg (Fermilab) Neutrinos in Electroweak Theory ν School · July 2007 129 / 142



Appendix: More on the Higgs boson

Bounding MH from above . . .
Triviality of scalar field theory

Only noninteracting scalar field theories make sense
on all energy scales

Quantum field theory vacuum is a dielectric medium
that screens charge

⇒ effective charge is a function of the distance or,
equivalently, of the energy scale

running coupling constant
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In λφ4 theory, calculate variation of coupling constant λ
in perturbation theory by summing bubble graphs

λ(µ) is related to a higher scale Λ by

1

λ(µ)
=

1

λ(Λ)
+

3

2π2
log (Λ/µ)

(Perturbation theory reliable only when λ is small, lattice field theory

treats strong-coupling regime)
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For stable Higgs potential (i.e., for vacuum energy not to
race off to −∞), require λ(Λ) ≥ 0

Rewrite RGE as an inequality

1

λ(µ)
≥ 3

2π2
log (Λ/µ)

. . . implies an upper bound

λ(µ) ≤ 2π2/3 log (Λ/µ)
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If we require the theory to make sense to arbitrarily high
energies—or short distances—then we must take the limit
Λ → ∞ while holding µ fixed at some reasonable physical
scale. In this limit, the bound forces λ(µ) to zero.
−→ free field theory “trivial”
Rewrite as bound on MH :

Λ ≤ µ exp

(
2π2

3λ(µ)

)

Choose µ = MH , and recall M2
H = 2λ(MH)v 2

Λ ≤ MH exp
(
4π2v 2/3M2

H

)
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Moral: For any MH , there is a maximum energy scale Λ⋆

at which the theory ceases to make sense.

The description of the Higgs boson as an elementary
scalar is at best an effective theory, valid over a finite
range of energies

Perturbative analysis breaks down when MH → 1 TeV/c2

and interactions become strong

Lattice analyses =⇒ MH ∼< 710 ± 60 GeV/c2 if theory
describes physics to a few percent up to a few TeV

If MH → 1 TeV EW theory lives on brink of instability
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Lower bound by requiring EWSB vacuum V (v) < V (0)

Requiring that 〈φ〉0 6= 0 be an absolute minimum of the
one-loop potential up to a scale Λ yields the
vacuum-stability condition . . . (for mt ∼<MW )

M2
H >

3GF

√
2

8π2
(2M4

W + M4
Z − 4m4

t ) log(Λ2/v 2)

(No illuminating analytic form for heavy mt)

If the Higgs boson is relatively light (which would require
explanation) then the theory can be self-consistent up to
very high energies
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If EW theory is to make sense all the way up to a unification scale
Λ⋆ = 1016 GeV, then 134 GeV/c2 ∼<MH ∼< 177 GeV
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Higgs-Boson Properties

Γ(H → f f̄ ) =
GFm2

f MH

4π
√

2
· Nc ·

(
1 − 4m2

f

M2
H

)3/2

∝ MH in the limit of large Higgs mass; ∝ β3 for scalar

Γ(H → W +W−) =
GFM3

H

32π
√

2
(1 − x)1/2(4 − 4x + 3x2) x ≡ 4M2

W /M2
H

Γ(H → Z 0Z 0) =
GFM3

H

64π
√

2
(1 − x ′)1/2(4 − 4x ′ + 3x ′2) x ′ ≡ 4M2

Z/M
2
H

asymptotically ∝ M3
H and 1

2M3
H , respectively (1

2 from weak isospin)

2x2 and 2x ′2 terms ⇔ decays into transverse gauge bosons
Dominant decays for large MH : pairs of longitudinal weak bosons
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For MH → 1 TeV, Higgs boson is ephemeral: ΓH → MH .
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ILC would measure light Higgs-boson couplings precisely

Points: 500 fb−1 @ 350 GeV Bands: theory uncertainty (mb)
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