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P(contents|I, finish)
prior probability or likelihood?

• Dependence of Bayesian UL on

– Signal “noninformative” priors

– Efficiency informative priors

– background informative priors

• Summary and Op/Ed Pages



The Problem

• Observation:   see   k events 

• Poisson variable:

– expected mean is   s+b (signal + background) 

– s = εεεεLLLLσσσσ
• efficiency × Luminosity × cross section

– “cross section ” σσσσ really cross section × branching ratio

• Calculate U, 95% upper limit on σ

– function of k, b, and uncertainties δδδδ
b
, δδδδεεεε, δδδδLLLL

– focus on upper limits: searches



Some typical cases for

Calculation of 95% Upper Limits

k=0, b=3 The Karmen Problem

k=3, b=3 Standard Model Rules Again

k=10, b=3 The Levitation of Gordy Kane?

“seeing no excess, we proceed to 

set an upper limit…”



The 95% Solution:

Reverend Bayes to the Rescue
• Why?  He appeals to our theoretical side

from statistics, we want “the answer”; as close as it gets?

• Why?  to handle nuisance parameters

Name your poison

• Tincture of Bayes

Cousins and Highland treatment:

• Frequentist signals +  Bayesian nuisance

• Bayes Full Strength

The DØ nostrum:

Both signal and nuisance parameters Bayesian



U = Bayes 95% Upper Limits

Credible Interval

• k =  number of events observed

• b = expected background

• Defined by integral on posterior probability

• Depends on prior probability for signal

how to express that we don’t know if it exists, 

but would be willing to believe it does?

This is the Faustian part of the bargain!

Posterior: compromise likelihood with prior



Expected coverage of Bayesian intervals

• Theorem:<coverage> = 95% for Bayes 95% interval

< > = average over (possible) true values weighted by prior

• Frequentist definition is minimum coverage for 

any value of parameter (especially the true one!)

not average coverage

• Classic tech support:  precise, plausible, misleading

if true for Poisson, why systematically under cover?

Because k small is infinitely small part of [0,∞]

but works beautifully for binomial (finite range)

• coverage varies with parameter but average is right on

– “obvious” if you do it with flat prior in parameter 



Am I a Bayesian or what???

• I’m not a fully baptized member

– sorry Harrison, not that you haven’t tried!

• A skeptical inquirer...or a reluctant convert?

Attraction of treating systematics is great

Is accepting a Prior (he’s uninformative!) too high a price?

Can we substitute convention for conviction?

Examine conventions for consequences!



Candidate Signal Priors
• Flat up to maximum M  (e.g. σTOT)

– (our recommendation--but not invariant!)

– a convention for BR × cross section 

• 1/√√√√s (Jeffreys: reparameterization invariant)

relatively popular “default” prior

• 1/s (one of Jeffreys’ recommendations)

get expected posterior mean

limit invariant under power transformation

• e
-as not singular at s=0

Bayes for combining with k=0 prev expt, 

a = relative sensitivity to this experiment  
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Power Family sp Results (δ
b
=0)

• The flat prior is not “special” (stationary)

But if b=0, Bayes UL =  Frequentist UL → coverage

but lower limit would differ

• 1/√√√√s gives smaller limit (more weight to s=0)

– less coverage than flat (though converges for k→∞)

• 1/s gives you 0 upper limit if b > 0

too prejudiced towards 0 signal!

• More p dependence for k=0 than k=3 or k=10  

flat (p=0) to 1/√s gives 36%, 26% , 6%

data able to overwhelm prior (b=3)
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Exponential Family Results 

(δ
b
=0)

• Peak at s=0 pulls limit lower than flat prior

• effects larger than 1/√s vs. flat: equivalent to data
• e-s gives you 1/2 the limit of flat (a=0) for k=0: 

combined 2 equal experiments

• biggest fractional effects on k=10   (=1/2.5)

because disagrees with previous k=0 measurement

opposite tendency of power family 

k=10 least dependent on power



Dependence on Efficiency Informative Prior

(representation of systematics)

• Input: estimated efficiency and uncertainty

ηηηη≡ uncertainty/estimate

“efficiency” is really εL (a nuisance parameter)

• Consider forms for efficiency prior
Expect: less fractional dependence on form of prior

• than on signal prior form

• because of the constraint of the input: informative

• study using flat prior for cross section,  δb=0
• Warning:    s = εL × σ (multiplicative form) 

limit in s could mean low efficiency or high σ



Expressing   ±δε
ηηηη ≡≡≡≡ δδδδεεεε/

• “obvious” Truncated Gaussian (Normal)

model for additive errors

we recommend(ed)

truncate so efficiency ≥ 0

• Lognormal (Gaussian in Ln ε )
model for multiplicative errors

• Gamma (Bayes conjugate prior)

flat prior + estimate of Poisson variable

• Beta (Bayes Conjugate prior)

flat prior + estimate of Binomial variable

ε̂
ε̂
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Results for Truncated Gaussian
• A bad choice, especially if η > .2 or so

• cutoff-dependent (MC: 4 sigma; calc .1<ε>)
Otherwise depends on M, range of prior for σ

• MC of course cranks out some answer

– dependent on luck, and cutoffs of generators

• WHY!? (same problem as with Coverage) 

– Can’t set limit if possibility of no sensitivity

Probability of  ε=0 always finite for a truncated Gaussian
with flat prior in σ, gives long tail in σ posterior

Bayes takes this literally: 

U reflects heavy weighting of large cross section!
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Results for alternatives 

ALL have P(ε=0) = 0 naturally
• Lognormal, beta, and gamma 

not very different (as expected--informative)

opinion: comparable to “choice of ensemble”

• Not a Huge effect:

U(η)/U(0) < 1+η up to η ∼ 1/3
. . .

• Lognormal, Gamma can be expressed as 

efficiency scaled to 1.0     (so can Gaussian)

• beta requires absolute scale (1-ε)j



Dependence on 

Background Uncertainty

• Use flat prior, no efficiency uncertainty

• Use truncated Gaussian to represent <b>±δb
But isn’t that a disaster?  No--

additive is very different from multiplicative

εLσ + b

behavior at b=0 not special
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Background Prior Results

• Result: very mild dependence on ±δb/b
< 10% change up to δb/b = .66
most sensitive for k=3, b=3; k=1, b=3

absolute maximum: set b=0 20-40% typically

set b=0:  force Frequentist coverage?

• No need to consider more complex models



Summary 
(out of things to say)

Cases studied:  b=3, k=0,3,10 mostly

studies changed one thing at a time

• All Bayes upper limits seen to

monotonically increase with uncertainties 

(couldn’t quite  prove:

Goedel’s Theorem for Dummies)

Hello PDG/RPP

nuisance effects 15% or so--please advise us

ignoring them gives too-optimistic limits



Signal Prior Summary

Flat signal prior a convention

b=0, η=0 matches Frequentist upper limit 

we still recommend it 

careful it’s not normalized

flat vs 1/√s matters at 30% level when setting limits

So publish what you did!  

Enough info to deduce NU= σσσσU/<εεεεLLLL> at one point

can see if method or results differ 

how about posting limits programs on web?

exponential family actually is a strong opinion (=data)



Informative Prior Summary 
Can’t set limit if possibility of no sensitivity

• Efficiency informative prior matters in Bayesian 

at a level of 10% differences if you avoid Gaussian

Prefer Lognormal over Truncated Gaussian 

Keep uncertainty under 30% (large, ill-defined!)
• limit grows 20-30% for 30% fractional error in efficiency

• growth worse than quadratic 

Bayesian upper limits larger than C+H; more similar

Publish what you did 

• Background uncertainty weaker effect than efficiency

– typically < 15% even at δb/b=1



Is 20% difference in limits 

worth a religious war ...?
(less of a problem if we actually find something!)

• Flat σ Prior broadly useful in counting expts?

• Set limits on visible cross section σU(θ)
signal MC for ε (θ)
stays as close as we can get to raw counts

here is where scheme-dependence hits; it’s not too bad…

resolution corrections, prior dependence ~ 20-30% or less

• Interpret exclusion limits for θ:
compare σU to σ(θ)

IF steep parameter dependence: less scheme-dependence 

in limits for θ than σU(θ)...


