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What | will talk about

| will review Artificial Neural Networks
(ANN), introduce the new technique of
boosted decision trees and then, using the
miniIBooNE experiment as a test bed
compare the techniques for distinguishing
sighal from background



Outline

What is ANN?
What i1s Boosting?
What is MiniBooNE?

Comparisons of ANN and Boosting for the
MiniBooNE experiment




Artificial Neural Networks

o Use to classify events, for example into
“signal” and “noise/background”.

e Suppose you have a set of “feature
variables”, obtained from the kinematic

variables of the event



Neural Network Structure

Combine the features
In a non-linear way to
a “hidden layer” and Wi
then to a “final layer”

Use a training set to find
the best w, to
distinguish signal and
background

wj-k

A one hidden layer feed-forward neural network architecture.
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Feedforward Neural Network--|

F(T)=g
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This corresponds to a network where the ., the input layer, are combined with weights

Wik and offsets ; to give a hidden layer h; = g(zl-r E;ﬂﬁf-’jkﬂ: -|—Hj), and the h; then

combined in a similar manner to give an output laver y;. Sometimes there are several

hidden layers, defined in the obvious way by iterating the procedure given in the previous

equation. The hidden layer enables non-linear modeling of the input data.



Feedforward Neural Network--I|

. 1 1
Fi(r)=g {Tzwijg (thﬁkiw ‘|‘9j) -I-E?:!:] .
; i

1" is a system parameter which scales the size of F}.

The weights w;; and w;j are the parameters to be fitted to the
data distributions and g(x) is the non-linear neuron activation

function, typically of the “sigmoid” form,

glr) = é[l + tanh(z)] = (1 4+ e72%)7 L,



Determining the weights

e Suppose want signal events to give output
=1 and background events to give
output=0

 Mean square error given Np training

events with desired outputs o, either 0 or 1,
and ANN results t.

_in (p) _ $+(p))2
E= oY 207 -t7)

p p=l i



Back Propagation to Determine

Welights
We,p =W, + AW,
where
AW, = — &
OW

+aAW,_,,""momentum _term _to _ stabalize"
+o,"noise _term _to avoid local minima"
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Boosted Decision Trees

 What Is a decision tree?
 What Is “boosting the decision trees”?
e Two algorithms for boosting.
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Decision Tree

e Go thru all PID
variables and find the
best to split events

e For each of the two
subsets repeat the
process

e Continuing a tree is
built. Ending nodes
are called leaves
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Select signal and background
leaves

e Assume an equal weight of signal and
background training events

 If more than Y2 of the weight in a leaf
corresponds to signal events, it is a signal
leaf; otherwise it Is a background leaf

e Signal events on a background leaf or
background events on a signal leaf are
misclassified
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Criterion for “best” split
e Purity: > W,
_ D W, + D> W,

* Gini: Note Gini is O for all signal or all
background

Gini = ZW)P(l P)

e Criterionisto mlnlmlze Gini_left + Gini_right
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Criterion for next branch to split

* Pick the branch to maximize the change In
Gini,

Criterion = Ginl,,.. —Gini —Gini

left—daughter right—daughter
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Boosting the Decision Tree

* Give the training E&mﬁm(ﬁc}
events misclassified
under this procedure s 1)
a higher weight and i

build a new tree s T4()

e Continuing, build

perhaps 1000 trees gy T(X)

and average the

results (1 if signal s Ty

leaf, -1 if bkrd leaf)
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Training and Testing Samples

* An ANN or boosted decision tree set are trained
with a sample of events—the training sample.

 However, it would be biased to use this sample
to evaluate how good the classifier is. lItis
optimized for this individual set.

* A new set, the testing sample is used to
evaluate the performance of the classifier after
tuning. All results quoted here are for the testing
sample.
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How determine change of weights

« Two commonly used algorithms for boosting
the decision trees are:

AdaBoost
& -boost (or “shrinkage”)
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Definitions

Xi = set of particle ID variables for event |
Yi= 1 if the ith event is signal,-1 if bkrd
Wi= welight of ith event

Tm(xi)= 1 If ith event lands on signal leaf,
and -1 if ith event lands on bkrd leaf

I(yiZ Tm(Xi)) =1 if misclassify, O if classify
correctly
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AdaBoost

e Define
Zwil(yi 7 T,(%))
err. ==

N

2

=1

a, = pBIn((L-err,)/err,)
S =1usual,0.50ur _use

e Change weight for misclassified events
1 (Y # T (%))
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Example

e Suppose the weighted error rate is 10%,
l.e., err=0.1

 Then alpha = (1/2)In((1-.1)/.1)=1.1

* Weight of a misclassified event is
multiplied by exp(1.1)~3

21



Scoring events with AdaBoost

 Renormalize weights

N
W, —>w, /W
=1
e Score by summing over trees

T(x)= NZ A T (X)
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Epsilon Boost (shrinkage)

o After tree m, change weight of misclassified
events, typical & ~0.01

WI % Wiezgl (y| iTm (Xi ))
 Renormalize weights

Wi—)Wi/ZN:Wi

o=l
« Score by summing over trees

T(x)= NZ &Tn (X)

m=1
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Comparison of methods

* Epsilon boost changes weights a little at a
time

 AdaBoost can be shown to try to optimize
each change of weights. Lets look a little
further at that
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AdaBoost Optimization

filz) =classifier, with values = 4-a; or —a;, with a; a positive constant
Flx) = E:;l filz). (sum over trees, )

Can show that AdaBoost minimizes the expectation value, £ {E_yF (I}) by a series of

Newton-like updates. Furthermore, the minimum value of E(e~¥* {I}) is

F(x) = %ln (%) ., which is % the log-odds of the probahilty that ¥ = 1, given
r. This minimization is closely related to maximizing the negative binomial log likelihood
(cross-entropy). They can both be shown to have the same minimizer, Further, with y* 1
or (), and p(z) = probability that y* =1 given z, then with F(z) = %]“T%EL;. it can be

shown that e ¥F(z) = WP _ y-statistic,
VP@)(1—p(x)
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AdaBoost Fitting Is Monotone

y is a gentler alternative to a Y minimizer, For finite samples, cross-entropy and ADA-
boost give slightly different loss functions for differing values of £, but both can be shown
to be monotone and smooth. The eriteria will contimually drive estimates toward purer
solutions (in terms of probability estimates). AdaBoost is quite resistant to overfitting,
(e-boosting, can sometimes reach a broad maximum and slowly overfit when plotted vs

number of trees,)

[f minimize E(y — F(z))% then it is NOT monotone. Classifications that are “too

correct” are penalized as much as misclassification errors.
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The MiniBooNE Experiment
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Neutrino Beam

“Tittle Muon
Counter” (LMC): to
understand K flux

\

FNAL
Booster

. Tp_—# L
o it =5 50 D r
/ B; dTﬁl;g:“'l' I:;gi:: i 7 Detector
= ' B v Flux
8 GeV protons =10 'L A B v, Flux
it 0°
= Proton flux ~ 6E16 p/hr (goal  :
9E16 p/hr) £ 107
¥ ~ 1 detected neutrino/minute L
» L/E~1




Target and magnetic horn

ncreases neutrino intensity by 7x

Sagg
lllllllllll

: H--—ii
e Y

70 KA 1n 140 psec pulses (@ 5 Hz

Currently positive particles are being
focused, selecting neutrinos 7+ — }L£+Vﬂ

the horn current can be reversed to select

antineutrinos - — UV

7

2rior to run, tested to -
10M pulses

Ran 97 million pulses before
ailing
the targe

Norld’'s lonaest-lived horn i



Horn now being replaced

It acquired eight times more pulses than
any previous horn anywhere.
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Horn and Target Region

* Primary beam position monitor: air
multiwire

e Target: 71 cm beryllium metal (1.7 A),

resides inside horn
* Horn:

- Inner conductor thickness: 3 mm
«Quter conductor thickness: 25 mm

- Peak current: 170 kA

- Pulse width: 140 us
- Voltace: ~4 kV




* 12 meter diameter sphere

e Filled with 950,000 liters
(900 tons) of very pure
mineral oil

 Light tight inner
region with 1280
photomultiplier tubes

 OQuter veto region wit
241 PMTs.

* Oscillation Search
Method:
Look for v, events
in a pure v, beam

® = a a A S S

[ |
B
.



ns)

probability {031

Characterizing the Detector

Timing Distribution lor Laser Evants (eld tubes)

o = Laser Calibration
/ > Laser pulses illuminate one of 4 flasks
which scatter light isotropically

» Used to understand PMT response

et prslging

rallbilions

sagitaning (lad)

RS SRR TSR NSRS SRITURS IR RS
—40 T 5] 20 &0} &0 B 100 flf

cormecled tima (ns)
jﬁ[um wacker Nhaan 'I'-r_ukz.- read out

Cosmic Muons

» Muon Tracker used in
conjunction with “cubes” to

trigger on a particular — S
endpoint (energy) e decion -
'E Mlichel
» Vital in understanding °

energy scale




aration of v, from v, events

Exiting v, events fire the veto

Stopping v, events have a Michel electron after a few psec

Also, scintillation light with longer time constant — enhanced for slow pions and p
Cerenkov rings from outgoing particles

« Shows up as a ring of hits in the phototubes mounted inside the MiniBooNE sphere
« Pattern of phototube hits tells the particle type

.'=- & .

| |
] 'l'l -.,Il .'-
- "
[ ]
s aptg a®

—~ i
*'-\InnrnntT miitnn avanit



330 WeY (kinetic) electrons and 352.5 WMeV (KE) mucns

an00
electrons are fuzzy :
muons are sharp ;a0 L Monte Carlo
AO00 :_ muan
E glectron
5300 :—
$, .o B hit tube angle
P T = L
Be  wne bl = w.r.t. track for
°e e L - muons and electrons
® s Ll 00 —
Ll 2
4 ;
2300 :— v
_ao28%a, - i’e'
E:l;:‘:::gﬂa 1600 5
- ]
.';.-lFi:.'.'. !‘L -,,,,,,,,,,,,|,,,,,,,,,..,|...
-:.'.‘:.:" D—’| -5 =08 -04 -07 0 2.2 0.4 OB

resi theta'



Examples of data events

Pattern of hit tubes (with charge and time information)
allows reconstruction of track location and direction
and separation of different event types.

muon
from v, interaction

e.g. candidate events:

size = charge, color = time

i L
.......
.........

,,,,,
FEras
""""

*
-

Michel electron 70 —> two photons

from stopped ndecay from v, interaction
after v  interaction
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Comparison of Neural Nets and
Boosting
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Numerical Results

There are 2 reconstruction-particle id packages
used in MiniBooNE, rfitter and sfitter

The best results for ANN and Boosting used
different numbers of variables, 21 or 22 being
best for ANN and 50-52 for boosting

Results quoted are ratios of background kept by
ANN to background kept for boosting, for a given
fraction of signal events kept

Only relative results are shown
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Boosting Results versus Ntree

e Top: N_bkrd divided 3]

by N_bkrd for 1000 1

354 ntree =800

trees and 50% nue

ntree = 1000

Relative Ratio

selection efficiency vs  ~ .li-
nue efficiency for T
CCQE events. o] |
EE-:JEII}—; i
» Bottom: AdaBoost sm] L
output for background £i%i kgoma™
and signal events for "L et N
40 G0 0 o 0 10 20 30
1000 treeS AdaBoost Output
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Numerical Results from rfitter

e Train against all kinds of backgrounds—21 ANN
variables and 52 boosting variables: for 40-60%
of signal kept, the ratio of ANN to boosting
background varied from 1.5to 1.8

e Train against nc pi0 background—22 ANN
variables and 52 boosting variables: for 40-60%
of signhal kept, the ratio of ANN to boosting
background varied from 1.3 to 1.6
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Comparison of Boosting and ANN

 A. Bkrd are cocktall
events. Red is 21
and black i1s 52
training var.

 B. Bkrd are piO
events. Red is 22 and
black is 52 training
variables

* Relative ratio is ANN
okrd kept/Boosting
okrd kept

FRelative Ratio

£

=

A

LT

Percent nue CCQE kept



Comparison of 21 (or 22) vs 52
variables for Boosting

1.75

« Vertical axis Is the R, 0

ratio of bkrd kept for i A

21(22) var./that kept | w%mmmw

for 52 var. Y S —
e Red is if training ,, slection fficiency * 100 (%)

sample is cocktail and

black is If training
sample is pi0

e Error bars are MC
statistical errors only
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AdaBoost vs Epsilon Boost and
differing tree sizes

1.6 -

 A. Bkrd for 8 leaves/
bkrd for 45 leaves. £ )]
Red is AdaBoost, |l
Black is Epsilon Boost

0.9

- B. Bkrd for AdaBoost/ i

bkrd for Epsilon Boost ..}
Nleaves = 45. 1

09 —_,r"".
0.8
0.7
0.6
0.5 4

Relative Ratio

Relative Ratio

o ] ntree = 5000
- II3|'::IIIII4|I:IIIIISIDIIlléclllll'_llﬂllllgll}ll




Numerical Results from sfitter

e Extensive attempt to find best variables for

ANN and for boosting starting from about
3000 candidates

e Train against piO and related
backgrounds—22 ANN variables and 50
boosting variables: for the region near
50% of signal kept, the ratio of ANN to
boosting background was about 1.2
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Number of parameters to fit

* In ANN Iif 22 input variables and a hidden
layer of 22, 2X(22 X (22+1)=1012. ANN
updates weights every few events.

 In boosting, If 1000 trees of 45 leaves,
then 1000 X45 X2 (which var and cut
point) = 90,000.
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For ANN

—or ANN one needs to set temperature,
nidden layer size, learning rate... There are
ots of parameters to tune

—or ANN, If one

a. Multiplies a variable by a constant,
varl/7->2.var 17

b. Switches two variables
var 17/7<—>var 18
c. Puts a variable in twice
The result is very likely to change
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For boosting

Boosting can handle more variables than ANN; it
will use what it needs.

Duplication or switching of variables will not
affect boosting results.

Suppose we make a change of variables y=f(x),
suchthatif x 2>x 1,theny 2>y 1. The
boosting results are unchanged. They depend
only on the ordering of the events

There iIs considerably less tuning for boosting
than for ANN.
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Conclusions

For MiniBooNE boosting is better than ANN by a
factor of 1.2—1.8

AdaBoost and Epsilon Boost give comparable
results within the region of interest (40%--60% nue
kept)

Use of a larger number of leaves (45) gives 10--20%
better performance than use of a small number (8).

It is expected that boosting techniques will have
wide applications in physics.
Preprint Physics/0408124; submitted to Phys. Rev.
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State of Oscillation Results

7

Am~ (eV )

e

Motivation for the Experiment - LSND

10

10

10 L

10

10- /I

v

.5 (Soudan, Kamiokande,

F MACRO, Super-K)

; (Homestake, SAGE,

"k GALLEX, Super-K

E SNO, KamLAND)

m

||=r|

LSND

-V,

Atmospheric

VF%VX

Solar MSW
Vﬁ—)ﬂ’x

107 10*

Simplest mode| has
three neutrino mass
eigenstates, but...

Data indicates 3 mass
differences

» Amé,  ~ 2-3x103 eV?
» Amé_ ~ 7x107° eV/?

» AM? o ~ -1-10 eV/?




LSND final result

» Corresponding osc. probability:
(0.264 £0.067 £ 0.045)%

LSND sees excess above backgrounds

— Excess: 87.9+ 22 .4+ 6.0 evts.

3.3 o evidence tor oscillation.

w
72}
é 1751 ® Beam Excess
L; 15| EEEE v, Ven & - LU DS
@ . = peein % Final LSND
m ~ _ _
?2.5_ . TR NE 10 Lt. Blue, 90% CL -3
1er S Oscillations < i Blue, 99% CL
7.5} o
L E
=] . B 3
o5k _ : LSND ]
O [T o R “'L Combined DAR and DIF
o : . o . o - (1993-1998)
0.4 0.6 0.8 1 1.2 1.4 i
L/E, (meters/MeV) N T R T .
107 1072 1072 107" 1



KARMEN 11 (1997-2001)

- Pulsed 800 MeV pot (ISIS)

— DAR beam (90° to target) — 11 events observed
— 17.6 m baseline — 12.3 + 0.6 events expected
« 56 tons of liquid scintillator ~ 10 *grrrm AR SRR
— 512 modules rf : i
— Gd-doped (8 MeV v) = 0 i
g 10 =
» x10 less statistics than LSND : :
. . . B darmen “CFR1
(less intensity & size)
i Buge y
| _main detector | 1 = =
E NOMA:
_1_
Ll g
: 90% (L, -L <2.3)
i 99% (L,,.-L <4.6) i
ln_z Illllll_‘j’ 1 | IIIIII|-2 | | IIIIII|-l | 1 1111
10 10 10 5 s
sin” 28
53




milar beam and detector to LSND

Closer distance and less target mass
— X10 less sensitive than LSND

iint analysis with LSND gives restricted

KARMEN Experiment

KARMEN?2 (90% CL)

gion (Church et al. hep-ex/0203023) 10"E [SND (99% CT)
||||||| I LY | | lﬂ-zl._l.'.l. ] L 1 11111l 1! |l.|..|
10~ 10~ 10"
sin“20
- - -

95% C.L.

90% C.L.

68% C.L.

_ - KARMEN also limits p=— e* v_v branching r

BR <0.9x10° (90% CL)

* LSND signal would require:
1.9x10°3 <BR <4.0 x 103 (90% CL)

= p*— e* v_v unlikely to explain LSND si



Interpretations of the LSND Signal

Not oscillations?

+ Anomalous muon decay? Ruled out by KARMEN2Z2 at 90%CL

(hep-ex/0302017)

10°+10°21 (Solar + Atmospheric = LSND)

Sterile Neutrinos? (No weak coupling < invisible Z width)

CPT Violation?

3+1 models
| B mﬂ

LSND {:

.ospheric [
Solar [—-EE
. ih

— LSND primarily v,

Increasingly disfavored

3+2 models

I M
L B

my
LSND {i

e 1]
Atmoeospheric l

Salar l e 11,

_m].

— LSND primarily v,

hep-ph/0305255

&ng

Am
Am

12

HE EH B O
¥ ¥ ¥

e (T U 5

CPT Violating Models

LSND &

m I atmospheric

atmospheric p——

KamLAMD
[ —

[
solar
[

hep-ph/0108199, hep-ph/0212116



Delivering Protons

= Requirements of MiniBooNE greatly exceed the
historical performance of the 30+ year old 8 GeV
Booster, pushes... R '
» Average repetition rate
» Above ground radiation
»| Radiation damage and
activation of accelerator
components
= Intense Program to improve
the Booster
» Shielding
» Loss monitoring and analysis
» Lattice improvements (result of Beam Physics involvement)
> Collimation system




The Detector (cont'd)

= Elecrons from muon decay
(Michel electrons) \m\“

> Vital for understanding signal

.005 GeV/c

Events/0

12000
events. o000 |-
P ErERsRRrmiisiririnrrRIEriariisriiriimErREriIRe *m
00F
t — MC signal + background
mf_ ________ MC background 1 [ D : o ey 70 i
ﬁﬂﬂ = Data {statistical errors only) | Energy IEME""-"}
5 PRELIMINARY
40F No. ©0's = 7208+ 144 ]
E ¥ INDF = 150.06/98 1 0
300/ Mass = 0.1391 % 0.0005 GeVicd | & "7 Even-l.s
200" » Help to understand higher
1007.. energy v,
Q5 6 015 03 02503 03564 045 03 035 » Help fix energy scale

n? mass (GeV/c 2]1




Understanding the Data: Examples

=
Lad
Ch

=]
!‘J. r
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=
i
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| ]

&
h
| T T
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Event Rates

D, Reactions

p,+ 2C -y N
399%)

Contributions to v, Signal

Hope LMC+HARP will help
Signal: Based with K background

on LSND

average \

7' N

300

p, + e other
0
0 13%)
T
p,+ L2C s 7' N (7%)
(25%)
MC

Parametrized pBe interaction (our fit
of BNL E910)

GEANT4 model of target, horn, and
beamline

NUANCE MC of neutrino interaction

Full hit-based MC of detector,
including oil, PMT's etfc.

Can be constrained with data




There are None So Blind...

= This is a difficult analysis, and there are many opportunities
for unintentional bias

= Therefore, we consider a blind analysis essential

= General philosophy: guilty until proven innocent

= Events go “into the box" unless they are specifically tagged
as being non-signal events, e.g

» Muons
+ Single p-like ring
+ Topological cuts
» w0
* No Michel electron
+ Clear two-ring fit, both with E>40 MeV
= Will only look at remaining data when

» We have enough protons, AND

¥ We are confident that we model the beam and detector well.




+ Oscillation sensitivity and measurement capability

— Data sample corresponding to 1x104 pot

— Systematic errors on the backgrounds average ~5%

4

MiniBooNE 1.0E21 pot |

(90 % CL,30and 50) |

-

Am? (eV ?)
S N O o~ s

AmZ= 0.4 eV?2

MiniBooNE 1.0E21
)

(1o and Z2a Contaurs)




Summary and Outlook

MiniBooNE has collected 3.5E20 protons

The experiment has made impressive progress in
understanding both the detector and the data.

Fermilab is about to go into a 13 week shutdown, during
which...
» The MiniBooNE horn will be replaced.

» Improvements will be made to the Booster, which should allow it
to achieve the MiniBooNE intensity goals

NuMI will start in early 2005, BUT MiniBooNE should be able
to continue taking data, albeit at a reduced intensity

» We could not have said this a few months ago.

» BEZ0 proton by early 2005

» 1E21 somewhere between mid-2006 and mid-2007
Will not release v, appearance result before 5E20, but other
physics along the way, e.g.

» NC 79 cross-section

> v, disappearance result
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