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Introduction

The Grid is emerging as a specialized distributed computation standard of unprecedented
power and scope, promising to turn commodity networks and computers into commodity
computation. The Grid concept has already been proven useful for science in many
applications [1] [2] and substantial infrastructure already exists [3] or is being planned
[4]. Data processing on the Grid ranges from tightly coupled computation using MPI [5]
or some other parallel processing standard effectively within a single application to
multiple filtering or data processing applications with large data flows between them. At
the same time, the requirements on such processing projects are being coordinated among
many individual researchers or research groups within a Virtual Organization (VO) [1].
Especially in the case of workflows containing a moderate number of application steps, it
becomes a daunting task to check that all of the input parameters and installed software
conform to decisions made at the collaboration level. It is useful to have a language that
is able to specify constraints on the parameters of the individual workflow steps that
bring them into line with collaborative decisions coherently across the entire workflow,
possibly even dynamically as decisions are being made. In the paper, it will be shown
that:

1) Collections of constraints can be gathered into documents called contexts that
function as operators on existing workflow graphs. An algebra of contexts
supporting composition can help different subgroups within a VO work together
though constraint sharing. Decomposition of contexts can allow for variance of
constraints simultaneously across several different categories.

2) Constraint expressions and contexts form an interesting and hitherto largely
unexplored area of data provenance. Knowledge of the constraints implies that it
is possible not only to know the values of application input parameters, but also
why they were set in particular ways.

3) A web services infrastructure supporting the distribution of constraints and
allowing for delayed operation of constraints to workflows so that constraints can
actually become part of the job planning process.

While it can be assumed that such constraints can be distributed within the stack of a
single running application using MPI, the techniques developed here will still find fruitful
application in the organizational aspects and in the aspects of sharing collaborative
decisions about constraints. A partial implementation of these ideas already exists in a
workflow building tool called MCRunjob [6] for the Compact Muon Solenoid (CMS)
experiment [7], an High Energy Physics experiment based at the European Center for
Nuclear Research (CERN) in Geneva, Switzerland[8].

In the following, we will focus mainly on semantic constraints and not constraints on
physical resources, synchronization, nor parallelization. Many traditional workflow
specification schemes such as DAGMan[9] and constraint mechanisms such as



ClassAds[10] already address these concerns. We will show how multigraphs, including
new arrow types called metadata flows, can be used to express constraints. And we will
outline a general procedure for reducing multigraphs into fully constrained workflow
descriptions suitable for execution by a workflow manager such as DAGMan.

Objects and Operations in a Workflow Constraint Language

Workflow specifications are often expressed as directed graphs. In special cases where
the workflow consists of pure filtering and/or simple record-style processing, these
graphs are directed acyclic graphs (DAGs). Let G=(N,A) be a general workflow graph.
Each node N in N corresponds to an application and the set of arrows A corresponds to a
partial sequencing of the nodes, often generated by real data flow relationships'. The
nodes may have attributes specifying some input parameters or conditions to the
corresponding application. In order to express constraints on G, it is necessary to add
both nodes and arrows. The resulting data structure is a multigraph®. The extra arrows
will correspond to constraint relationships between specific node attributes. These extra
arrows will be called metadata flows, and the set of all metadata flow arrows
constraining a graph G will be denoted F. In addition to metadata flows, special nodes
may be added whose only purpose is to serve as sources or sinks for metadata flows.
These extra nodes are called metadata terminals, and the set of these added to G will be
denoted M. The multigraph containing G and its constraints expressed as in F and M
will be denoted M. (See Figure 1.) Several types of arrows are evident in M; including
at least conventional workflow sequencing arrows and metadata flows. Special arrows
that contain extra instructions or even nodes to handle cases like file transfer associated
with a data flow relationship are an example of a special case.

Operations in the constraint language will consist mainly of reduction operations that
satisfy the metadata flows and gradually reduce Mj; to a fully constrained and specified
G’. Let F(N::n,M) denote a metadata flow, where N and M are nodes in N, and n is an
attribute in N. The first argument is the target of the constraint while the second
argument is the domain. A reduction Ryover F is an operation that replaces the value of
attribute N::n by some value which satisfies the constraint computed from the domain M.
For example, the simplest such operation is just the assignment reduction =;: N::in =
M::m constraint on N::n is that it be equal to M::m where m is some attribute in M.
Categorically, the unifying character of this picture can be seen by considering that
general constraint reductions targeting an attribute value in some workflow node are

! Alternatively, the nodes may correspond to data products and the arrows may correspond to
data transformations. These two pictures are equivalent and we will assume for the purposes of
this paper that a transformation graph can always be converted into an application sequence
graph, have constraints applied, reduced according to those constraints, and then converted back
into a transformation graph.

* A graph comprises some set N of nodes and a set A of arrows such that for any two nodes N and
M in N, N and M can have at most one arrow a in A between them. In a multigraph, the
restriction on the number of arrows is dropped.



equivalent to constant assignment reductions emanating from a metadata terminal
node[11]. This equivalence should be reflected in the constraint language.

Reduction always results in the removal of a single arrow from F and possibly the
alteration of at most one attribute in the target node of the flow. Reduction can continue
until M, has been transformed into G*. (For help with the symbols being introduced,
please refer to table 1 below.)
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Figure 1: (A} A simple four application (non cvelic) workflow graph. In order to use this graph, all node atributes must be
sel. (B) The simple graph in part A has been augmented with metadata flows (in pink ) ving various constraint relation-

ships. In addition.a metadata source has been added. The constraint augmenied workflow graph in a multigraph.

Let M’ be the metadata flow subgraph of Mg, such that M’ contains all of the nodes of
M, but only the arrows in F. It should be noted that this subgraph should be acyclic so
that at least one partial ordering for the reduction process exists and is well defined.
Metadata flows exist essentially to carry metadata to a finite number of graph nodes in a
possibly cyclic G, and each node in G has a finite number of attributes. Thus it is always
possible to find a finite spanning tree.

* I am using the letter G loosely here. The original G in M, did not have constraints applied, and
the final G after reduction does. It is in fact an iterative process so that there is a whole sequence
of reduced “G’s” between the first one and the final one. In the final paper, a reduction algorithm
will be given that makes this clear; it was omitted here for brevity. This goes for F as well.



Nonetheless, there are many such reduction partial orders and some optimization may be
gained by grouping some reduction operations together. The language should therefore
have some facility to favor a given reduction partial order over others, such as specifying
that they belong to groups.

Graph Name Nodes Arrows
G Workflow Graph N A
F Metadata Flows - F
M Metadata Terminals M -
C Context M F
MG Constrained Workflow M+N A+F
MG’ Metadata Flow Subgraph M+N F

Table 1: Some help with terminology. Contexts will be introduced in the next section.

An example of a metadata source terminal is a node that holds a query result from some
catalog. For example, it may contain metadata about calibrations that need to be
synchronized across all application nodes in a workflow, or it may iterate over input
filenames in a dataset. An example of a metadata sink is a node that may consume
metadata merely to record it, such as a tracking system or provenance recorder or a node
that will transform the workflow into a shell script.

Constraints and Contexts

The basic structures in this workflow language are the multigraph and the metadata flow.
The basic operation in this workflow language is the reduction operation that gradually
reduces the multigraph by removing metadata flows while causing constraints to be
satisfied, resulting in a conventional workflow graph. In the above section, we
introduced the metadata flow subgraph M’ that contains all of the nodes in G together
with any metadata terminal nodes and the metadata flows. While satisfactory for
demonstrating why metadata flow trees should be acyclic, M’ is unsatisfactory as a
referenced object in the language, because it mixes the workflow nodes of G with the
constraints explicitly. Much more useful is the context C, consisting of the metadata
terminals alone and the metadata flows. By partitioning Mg into context parts C and
application workflow parts G, we gain the possibility that a given set of constraints
agreed upon by some large organization can be applied to multiple application workflow
graphs, and that a given application workflow graph can be run in a variety of contexts.

Given the infinitely wide variety of workflow graphs and contexts possible, it is a non-
trivial task to design an algebra by which these sets can be combined in a meaningful
way. A further problem is that C by itself is not even a well-defined graph because some
of the arrows in C point to nodes that are not in C! The approach taken here to deal with
these problems is to assign types to the graph nodes in the application workflow graph.
By surveying the set of all possible application nodes in an organization, it is possible to
come up with a super-context document D that, rather than being a graph subset, is a
collection of rules for how to apply metadata terminals and metadata flows in a real
application workflow graph as workflow nodes are added into the super-context. The



rules are indexed by node type and are applied under one of two kinds of semantics:
“only-once” semantics or “for-each” semantics. For metadata terminals, the only-once
semantics are generally used. For metadata flows, the for-each semantics are generally
used. (See figure 2.)
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Figure 2: A context document. The application workflow node type (added at center) is used to
lookup rules for adding metadata flows and/or metadata terminal nodes. Generally, flows are
added with “for-every” semantics and nodes are added with “only-once” semantics.

This approach, though it restricts the kinds of metadata flows to something less than full
generality, works for a surprisingly large number of cases. Also, the approach can be
easily extended to switch rules based on tuples of node types rather than just singleton
nodes as is currently worked out.

Finally, algebra for combining different super-context documents is being developed.
This is somewhat more difficult to do in complete generality not only since the
documents are not graph descriptions, but also because rules must be developed to handle
metadata collisions; when metadata flows share the same target. The final metadata flow
that gets applied may depend upon the order in which the context documents are
processed. However, there is still a large class of problems for which the metadata flows
do not collide and are yet useful; and there is also another set of problems for which the
“shadowing” behavior of metadata flows is actually desirable, such as for simple
replacement of site dependent variables.

Much existing work on Context Oriented Programming (COP) [12] is being done for
mobile computing. Systems are being developed to exchange the actual code that gets
run in different locales. The present work is different in that it is effectively exchanging
data and constraints and not actual code. Also, the definition of ‘locale’ here is anything
of relevance to the VO: physics group, personal role, etc.

Constraints and Contexts as Provenance



Provenance deals with the problem of collecting all of the information needed in order to
recreate a data product. The transformation graph approach of GriPhyN is most useful
here[13]. To briefly recap, a data product is logically represented as the final result of a
sequence of transformations where each transformation is a template for an actual
application run that processes the data. Given an initial data product, together with a
concrete specification of transformations (called derivations) it is possible to exactly
reconstruct all of the application processing steps that went into creating the final
product. This picture has the useful side effect that a data product can exist virtually, that
is, before any of the actual processing steps have been run. This gives rise to the
possibility of performing an extra optimization step in which the possibility of playing off
the cost of transfer of an existing data product to the end site versus recalculating it there.
Detailed provenance is therefore built into the system.

The prospect of saving metadata flows and metadata terminal nodes before the process of
reduction begins on a constrained workflow graph offers the possibility of saving a new
kind of provenance. Namely, in addition to saving the flat values of all of the parameters
that go into creating a data product, one can also save the constraints and relationships
among those parameters and, by extension, why the parameters in a conventional
provenance have the values that they do: which calibration set is being used, is it being
used across all workflow steps, who signed off on the set of constraints as a whole and
not just considering each constraint one by one. This is because the provenance as
expressed in a workflow constraint language is categorical.

Infrastructure Components

Due to space constraints, the infrastructure components needed to support a constraint
language will be treated briefly here. Obviously, an implementation of a constraint
language satisfying the considerations given here can be done so that all reductions are
done before execution time. In this mode, a workflow specification is given along with a
super-context, all reductions are done offline in order to obtain an executable workflow,
and then this workflow is run on an execution resource.

However, in order to optimize some of the reductions, it is often desirable to delay them.
This corresponds to a particular mode of abstract planning. In order to achieve this
abstract planning, it is useful to group the reductions by some partial order as described
above. Some group or other of reductions can be done by the appropriate remote
procedure calls or database lookups. In the infrastructures being planned, these could be
exposed as a simple Web Service.

We alluded to special metadata flows above that may come along with helper nodes. For
example, a dataflow relationship (non-streaming) often comes along with a requirement
for a transfer of one or more data files. This metadata flow then would be more complex
in that more than one application or atomic service is involved, and it lasts for a non-
negligible amount of time. Therefore a service handle is needed, and the Web Services
Resource Framework (WSRF) [14] will be employed.



Conclusion and Relation to Other Work

This paper outlined some considerations for constraint modeling in Grid application
workflows. We focused mainly on semantic constraints and not constraints on physical
resources. We have shown how multigraphs and metadata flows can be used to express
constraints, and outlined a general procedure for reducing multigraphs into fully
constrained graph workflow descriptions.

DAGMan[9] has an excellent language for graph workflow description, and a manager
for executing the graph nodes in sequence with fault tolerance. It is integrated with
ClassAds[10] which provide an excellent mechanism for expressing constraints in terms
of external quantities, such as physical or machine parameters.

Many of the concepts discussed here have been prototyped in a production system for the
CMS experiment called MCRunjob. MCRunjob is a macro script driven tool for
producing jobs for Monte Carlo simulation of the effects of high energy physics events in
the CMS detector at CERN. MCRunjob contains metadata flows with assignment
reduction, framework style grouping of reduction operations, metadata terminal nodes for
catalog lookup and job building, and super-context documents. In MCRunjob, a
demonstration partitioning of contexts have been achieved that allow for independently
swapping among different grid environments (“US” versus “EU” grids versus
“Chimera”[16]) and among different physics environments (“official CMS” versus
“private” production) and executing the same application workflow in all six
environments.

Traditional context oriented programming substitutes actual executable code depending
upon the locale in which it is executing. This work focuses mainly on metadata flows
among parameters in graph nodes and how those metadata flows change depending upon
what context is used. This is essentially equivalent to operating on method footprints, but
effectively only by varying default parameter values based on a logical locale with
meaning in a VO. A formal investigation in this direction may bear fruit with respect to
heavily parallel programming, for example with MPI. In particular, in a data streaming
environment, if constraints are changing then a Web Services infrastructure that supports
the style of semantic constraints described here could be able to support dynamic
constraint switching in real time.

Other more traditional workflow managers, BPEL, and KM schemes such as the
Semantic Web will also be investigated for the paper, but we omit these here for brevity.
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