RunJob Project Outline
--DRAFT II--

Anzar Afaq, Greg Graham, Gerald Guglielmo, Eric Wicklund
Fermi National Accelerator Laboratory

Dave Evans
Imperial College

Peter Love
Lancaster Univeristy

Introduction

MCRunjob was first employed during the 1999 Monte Carlo Challenges of the DZero
experiment. It was designed to cope with the configuration of multiple cooperating applications
generating and processing a flow of data, to wrap these applications in a form by which they
could be submit as batch jobs, and to track or facilitate the tracking of these jobs through success
or failure states. The requirements on MCRunjob were that it be able to interoperate with SAM
by producing the metadata needed to import produced Monte Carlo files there, that it produce
scripts to run the applications in a variety of execution environments, and that it be able to
execute them in those environments: ranging from mainframes at Fermilab and NIKHEF to Linux
farms at Fermilab and around the world. The solution was to adopt a modular architecture with
customizable interfaces to allow for easy extension to new environments and applications. Each
distinct application, database, or external service was modeled internally as a Configurator. The
Configurator kept the relevant metadata describing the application input parameters, results of
database queries, and service invocations; and were also responsible for generating jobs to
achieve a specific data processing workflow pattern. The Configurators were maintained in a
container called the Linker that coordinated the actions of the Configurators, facilitated
communication among them, and collected application specific job scripts into a unified “linked”
job including all applications. Another Configurator abstracting the local execution services
(such as LSF, PBS, or LSF) could then submit the job. Control of MCRunjob is generally
achieved using macro scripts. The user will write or will use a canned script containing macros
that are interpreted by the Linker into calls on the Linker and Configurator APIs. In DZero, this
technology has advanced to the point that a user may submit only a very generic script and most
of the actual macro script is written on the fly.

Since that time, MCRunjob has been successfully employed by the CMS experiment to do
worldwide Monte Carlo production using a production control database located at CERN and
new execution environments including the Condor-G/Globus environment of the Virtual Data
Toolkit (VDT), Chimera, and the first middleware package of the Large Hadron Collider (LCG-
1) It has also been extended within the DZero experiment to use SAM as a production control
database, to use associated prototype Grid environments there, and to do data reprocessing. It is
now currently being introduced to the CDF experiment as well.

A pilot Runjob project was initiated in the Spring of 2003 in order to explore similarities between
the then divergent DZero and CMS branches of MCRunjob. At the time, a common complaint
from developers seeking to integrate MCRunjob with CMS and DZero systems was that the



MCRunjob code was not well documented and seemed ad hoc. This was true, and was largely
owing to the high pressure, external milestone driven development environment of MCRunjob in
each of the experiments. Therefore the pilot MCRunjob project was initiated to address these
issues. It operated mainly by analyzing code and usage from each of the experiments’ MCRunjob
code bases, drew out the best of the code that was still in common, cleaned it up, and deposited it
into a common CVS repository code named ShahKar.

Viewed in terms of these requirements, the pilot Runjob project was a success. A ShahKar CVS
repository was established and a code librarian (Eric Wicklund) was assigned to maintain the
code there and implement and run regular unit tests and package tests. Base classes abstracting
the core functionality of DZero and CMS MCRunjob were written and stored there, including a
BaseFramework, BaseParser, BaseConfigurator, BaseLinker, and ShahKarException class. The
code is much better documented and adherent to design. And finally, an integration of the CMS
MCRunjob and RunJob code was achieved in November 2003 and one is currently underway for
the DZero experiment.

Proposal for a RunJob Project and Lessons Learned From the Pilot RunJob Project

The integration of the RunJob core code with the CMS MCRunjob package, though successful,
involved illustrative headaches. It was found that if the integration effort was not mainstreamed
into the experiments’ planning, then integration was difficult to propagate. In fact, although a
CMS MCRunjob integration with the RunJob core code has been achieved, it has not been
propagated forward in CMS even though the effort to do so was available. The integration of the
RunJob code with DZero code is on the other hand fighting two issues: it is not mainstreamed
into DZero computing planning and the integration effort is continually reassigned to other tasks.
(We are actually in a more fortunate situation with CDF since they are essentially starting from
scratch with the RunJob project.) In order to achieve a lasting level of integration and usefulness,
RunJob project planning will need to be more closely coordinated with the participating
experiments in order to accommodate their milestones and requirements through effort applied to
this project. Only then does it make sense for the experiments to support the RunJob project with
effort and for the computing division to do the same.

The most obvious point to make is that there are now three experiments at Fermilab (DZero,
CMS, and CDF) using or considering using MCRunjob flavored packages to aid in large scale
Monte Carlo production and batch oriented data reprocessing or analysis on diverse sets of
computing resources located worldwide. While each experiment expends some effort towards
developing and maintaining its own set of solutions within this framework, each experiment
basically has a similar set of requirements on such solutions. It is the proposal of this project to
unite these efforts and harness them to create common solutions that will benefit all of the
participating experiments at a long term savings of manpower.

The pilot RunJob project was structured passively in such a way that core development continued
in each experiment, and developments deemed good were ported to the RunJob common code
package, ShahKar. This had the advantage of being able to clean up significantly the respective
experiment code and lay the foundations for a later follow on project while exploring the
feasibility of the integration efforts. However, in addition to the above mentioned integration
problems, lack of focus on the core project led to difficulties in internal planning as features were
driven by the needs of independent experiments that did not talk to each other. These difficulties
were nonetheless overcome through the excellent technical leadership of the experiment
representatives: Anzar Afaq (CMS), Dave Evans (DZero/CDF), and Peter Love (DZero).



However, it is felt that a better project structure more closely aligned with the experiments and
more proactive in gathering common requirements could greatly amplify these efforts.

For the RunJob project itself, we therefore propose a structural change from the pilot project that
will lead to improved focus on core issues and responsibilities and better facilitate
communication between the experiments as they seek to better use resources in common ways,
including but not limited to better use of Grid technology. We therefore propose that the RunJob
project should include both a core development effort that is getting requirements from the
experiments and a dedicated integration effort that is driven by experiments’ milestones. This is a
fundamental shift from the pilot RunJob project which did not do core development (beyond
keeping up with core development in experiments’ RunJob variants) and which assumed that
integration projects would be managed by the experiments.

In order to support this model, we will propose to keep the ShahKar' CVS module at Fermilab as
the basis of core development. The RunJob code, as already developed in the RunJob pilot
project, is packaged and distributed as tar files, RPMS, and UPS/UPD. We propose to reanalyze
these distribution methods in the light of experiments’ requirements again, and maintain these
distributions within the RunJob project. The experiments will again maintain their specific
variants of RunJob based upon the common distributed RunJob project code, but the integration
task will be taken over by or shared with the RunJob project. RunJob project management will be
independent of the experiments’ regular line management but will answer to the experiments’
software and computing top management on milestones and deliverables.

Common Requirements

The most general requirements on the RunJob project come from the experiences of running and
managing large Monte Carlo processing jobs on diverse resources.

(1) RunJob will have a modular architecture that will support building and submitting of jobs
for a diverse set of computing environments. This modularity will include APIs that
make extension to new environments straightforward. The environments will include
Grid based environments and Web Services based environments.

(2) RunJob will have a modular architecture that will support the description of various
physics applications with metadata, including user written analysis applications. The
metadata architecture will include APIs that keep a record of provenance, job tracking,
and job resubmission.

(3) RunJob will have a modular architecture that will support many different services
sometimes used in job building, such as production control databases or external tracking
databases. RunJob may provide working stubs for each of these services, but it is
understood that the experiments may also have their own preferred solutions, in which
case RunJob will communicate with those external services through its APIs.

(4) RunJob will be able to chain physics applications together. For example, a RunJob job
may consist of a tree rooted at Pythia generation of events followed by a GEANT
simulation followed by two digitization runs at different pileup conditions each followed
by ROOT tuple makers and finished by a program that compares the ntuples. (Such an
arrangement consisting of two or more steps connected by data flow is called a
“workflow” in the following.)

"It is estimated that the cost of changing the name “ShahKar” in the code itself would cost about a man
week of effort. We propose to keep the name “RunJob powered by ShahKar” ala “Netscape powered by
Gecko.”



(5) RunJob will contain primitives for expressing constraints on the workflow in a systematic
way. For example, RunJob expresses data flow by constraining certain input
specifications to be equal to certain output specifications. RunJob may also constrain
some input parameters to come from a production control database and some from a
user’s private home area. Finally, collections of constraints (called contexts) may be
managed centrally and be allowed to vary by physics group, execution environment or
site, etc.

The existing ShahKar codebase from the RunJob pilot project satisfies all of these requirements
already generically: ShahKar APIs exist to satisfy each of the general requirements above, but
ShahKar does not include specific application descriptions, environments, services, or contexts.
Specific instances of these components exist in each experiment’s RunJob variant codebase.

Project Structure and Manpower

Though we feel that the above set of requirements adequately describes the requirements in
general terms, these are still too abstract to be useful in setting goals for the project. A set of
comprehensive meetings need to take place with representatives from the experiments’ top
computing management in order to agree upon a set of more concrete requirements, deliverables,
and a schedule that is in sync with experiments’ milestones. We consider this interaction to be
critical to the success of the RunJob project. In order to deal effectively with these requirements
and stick to the schedule, the following roles are proposed for the project.

(1) Project Leader / System Engineer — The project leader and system engineer will be the
primary point of contact between the RunJob project and the experiments. The Project
Leader will be responsible for negotiating for and tracking effort on project and reporting
back to the computing division and experiments periodically. As System Engineer, he is
also responsible for negotiating features and requirements with the experiments and for
translating these into specific code requirements that the developers can understand, and
must therefore be knowledgeable about the system as well as the requirements.

(2) Chief Architect — The Chief Architect is responsible for defining the components of the
core product, defining the APIs, documenting the architecture, and making important
technology choices internally. The chief architect would make decisions about merging
or creating new subsystems. For example, the Chief Architect would be responsible for a
Web Services decomposition of the product in the new Globus WSREF if there were a
need for the project to move in that direction. The Chief Architect reports to the Project
Leader / System Engineer and will assist in writing down the code requirements.

(3) Technical Leader / Feature Engineer — The Feature Engineer is responsible for
coordinating the pool of developers for achieving tasks assigned by the System Engineer
in the requirements. The Feature Engineer is responsible for providing time estimates for
specific implementations asked for in the requirements provided by the System Engineer.

(4) Code Librarian / Chief Quality Engineer — The Code Librarian is responsible for
maintaining the ShahKar CVS module and for maintaining development branches,
merging branches, making prereleases, and releases. The Code Librarian is also
responsible for packaging the released code using methods determined by the System
Engineer in collaboration with the experiments. As Chief Quality Engineer, the Code
Librarian is also responsible for unit and system testing. This may happen as part of the
release process.

(5) Technical Writing Assistant — A Technical Writing Assistant will be in charge of
organization and some production of documentary materials and their presentation on the
WWW.



(6) Core Developers — Work with Feature Engineer to implement specific requirements on
the RunJob core codebase, ShahKar.

(7) Integration Developers — Work under the direction of the Feature Engineer with Core
Developers to integrate or develop experiment specific extensions of the RunJob core
codebase. This is a critical category because members will require both some knowledge
of RunJob internals and APIs as well as of experiment specific applications and
environments. Their place on the project is absolutely required, however, in order to
facilitate integration and to keep integrations up to date without experiments slipping
behind. The RunJob Project will ask for a pool of dedicated Integration Developers from
each experiment. This category also acts as a safety valve in that experiments can add
manpower here to quickly turnaround on contingency integration or experiment specific
development that was not planned for earlier.

Requirements and Milestones Coming From the Experiments

At the time of writing, we have not yet initiated dialogue with the experiments’ software and
computing management over what specific milestones and deliverables to include. (Nor have we
identified manpower.) The first act of this project should therefore be a phase of “requirement
discovery” to begin the process of input into RunJob project. Although manpower estimates are
given in this plan, it is understood that deltas against the given schedule will result in deltas in the
manpower/schedule estimates as well. Nonetheless, the following loose feature requests were
communicated by the expriment representatives on the pilot RunJob project.

Upcoming milestones in the CMS experiment include the finishing of Monte Carlo production for
the CMS Physics TDR in late 2004. During this production phase, CMS will need to scale up
dramatically the number of grid computing resources under its control to keep up with production
needs and to keep up with LCG related grid computing milestones. Also, CMS will participate in
the ARDA (Architectural RoaDmap for Analysis) project among the four LHC experiments.
Finally, the US Grids are exploring an Open Science Grid (OSG) to become the critical shared
grid infrastructure for US science. The RunJob project will provide work on the following
requirements
(1) Support and maintenance for the core codebase of the CMS MCRunjob variant merged
with ShahKar.
(2) New feature development in the area of LCG computing environments.
(3) Support for interoperability between LCG computing environments and existing US Grid
environments.
(4) Support for interoperability with the OSG environment.
(5) Seamless support across transitions in underlying grid computing environments, such as
upgrades in Globus or migration to new architectures such as WSRF.
(6) Integration support to bring these new environments into mainstream CMS MCRunjob
variant.
(7) Integration support for POOL catalog accesses and dataset naming schemes.
(8) Integration support for new user defined analysis applications in CMS using the COBRA
framework and packages with DAR.
(9) Integration support for CMS specific catalogs and the CMS production control database.
(10) Integration support for CMS specific monitoring tools BOSS and RMT.
(11) User interface support: CMS Analysis Specification Tool (CAST)
(12) Integration support for Virtual Data Language production for Chimera. (This
requirement is contingent upon GriPhyN or iVDGL support of integration developers.)
(13) Integration support for Sphinx scheduling environment. (This requirement is
contingent upon GriPhyN or iVDGL support of integration developers.)



The DZero experiment is a running experiment and as such has very tight schedules for features
and requirements. An important milestone coming up is Grid Monte Carlo production using
DZero RunJob and the DZero RunTime Environment (RTE). Also, in the summer of 2004,
another data reprocessing run will take place. The RunJob project will provide work on the
following requirements
(1) Support and maintenance for the core codebase of the DZero RunJob variant merged with
ShahKar.
(2) Support and maintenance for interface to the DZero Grid environment or JIM.
(3) Support and maintenance for interface to the DZero RTE on local farms and then in the
DZero Grid environment.
(4) Support for sandboxing and generic descriptions of jobs that can operate locally or at
remote sites.
(5) API for specifying and setting up an RTE.
(6) API for specification of distribution of code to remote grid sites,
(7) Integration support and maintenance for interface to experiment specific metadata catalog
SAM. Produce and query SAM metadata.
(8) Integration support and maintenance for interface to experiment specific production
control database SAM (MC Tables).
(9) User interface support and Macro preprocessor.

The CDF experiment as a running experiment also has significant computing milestones
throughout the year. However, CDF also does not have an existing RunJob code base that has to
be integrated. Many support and maintenance milestones are therefore straight-up development
milestones. The RunJob project will provide:

(1) Development of a core CDF RunJob variant (begun by Dave Evans) to replace existing
farm control scripts. This is a very broad category and must be explored in more detail
later with CDF computing management.

(2) Development of a metadata handling system that can interface to SAM.

(3) Development of a catalog interface that can interface to SAM to query datasets.

(4) Development of dataflow tracking and management tools (File Meta Brokers)

One striking aspect of these requirement sets is how much they share in common: support for grid
environments, support for diverse local runtime environments, metadata tracking for data
intensive applications, metadata querying and insertion, and interfaces to new or existing systems
such as LCG, SAM or the CMS Reference Database. Each experiment now devotes some
amount of resources to solving these problems locally and ends up effectively duplicating some
effort. By working together, some common aspects such as generic approaches to catalog
lookups, farm environments, grid environments, and data movement strategies can be solved in
common and reduced to an integration task per experiment. It also promises to be an excellent
conduit for technology transfer between the experiments.

RunJob Architecture

(To be included later. For now, please see other documentation on the Web.)

Milestones and Deliverables

The pilot RunJob project produced a core code package called ShahKar. This pilot package has

been integrated with the CMS MCRunjob tool, and integration with the Dzero RunJob tool is
progressing. Therefore, the early milestones will deal with these integration projects. Once the



experiments’ RunJob variants are integrated with ShahKar, then we will do all the significant
feature development requested by the experiments in the ShahKar project itself and continuously
support the integration of the experiments’ variants with integration developers. The CDF
experiment is in a unique position in that they have no pre-existing RunJob variant and can begin
developing with ShahKar right away. This early phase of intensive integration will coincide with
a period on requirements gathering. All milestones assume on project manpower unless
otherwise noted.

Before any list of specific milestones can be taken on by the project, it is important to get buy in
from the experiments on a general set of requirements as listed above and to enter into an
intensive period of early negotiation to agree upon a list of specific deliverables and an extended
period of ongoing negotiation over new features and to feed back on existing features. That
period of negotiation has not yet occurred, and therefore we have broken the project up into two
phases: an “Early Integration Phase” during which the experiments learn about, integrate or
develop with the core code from the RunJob pilot project and a longer term “Development and
Continuing Integration Phase” where the bulk of the core development occurs. During the earlier
phase, the experiments and the project should develop a suitable list of tasks together that will
achieve the relevant milestones. The main deliverable of the early phase is the negotiation of an
initial set of requirements.

The following list of later development milestones is a guess based upon the authors’ current
guesses as to the requirements of the experiments. These are probably pretty good guesses in
themselves, but as a list they are probably incomplete. Nonetheless, many of the requirements
can be mapped to specific items in the list.

Early Integration Phase Milestones

Milestone Date Comment

Final RunJob Project Web 3/15/05 Project Webpage including project plan, management

Page Designed and Available documents, instructions for use, architectural
documents, and other documentation.

Unit Tests Module Complete 3/31/04 A suite of comprehensive tests to be run before every
major or minor release.

CMS Switchover to RunJob 4/15/04 The CMS MCRunjob package, which has already

core been integrated with the RunJob core package, will be

distributed with RunJob core by default.

Dzero Integration with RunJob 4/15/04 The Dzero RunJob package will be integrated with
core RunJob core package. This means that essential
services and base classes will be coming from
RunJob core.

CDF Initial Development with 4/31/04 CDF will develop an initial job creation, submission,

RunJob core and farm control facility using RunJob core to replace
legacy farm scripts.

Requirements Negotiation 5/15/04 All experiment specific requirements are gathered and

Finished milestone integration timetables finalized.

Dzero Switchover to RunJob 6/15/04 The Dzero RunJob package will be distributed by

core default with the RunJob core package.




Later Development and Continuing Integration Phase Milestones

Milestone

Date

Comment

Design and Implement
scriptObject architecture

3/31/04

The architecture of scriptObjects is finalized and
implemented. ScriptObjects provide a layer of
abstraction between abstract job descriptions and
concrete executable jobs that greatly enhances
portability between grid and execution environments,

Context mechanism
prototyped and implemented

4/7/04

The RunJob core contexts will be prototyped and
implemented without algebraic models for context
composition. Contexts provide compact and portable
descriptions of constraints relating to environments,
such as site/grid constraints, application constraints, or
logical (physics group) constraints.

Design and Implement
Configurator Addressing

4/15/04

The architecture for interconfigurator referencing,
naming, and dependencies is finalized and
implemented. This is needed in order to propagate
constraints and internal events. The current
architecture is adequate but not extensible, and we
would like to add user defined metadata to the
Configurator descriptions.

File Meta Broker Design and
Implemented

4/21/04

Common interface for specification of file transfers
and translating these into environment appropriate
mechanisms for file transfer. FMBs will be associated
with workflow arrows tagged to correspond with
dataflows and will be generated automatically. FMBs
provide a layer of abstraction that allows dataflow to
be expressed the same way in environments that
support transparent data movement as in environments
that need data movement to be specified explicitly.
Specific FMBs can be chosen dynamically when
context is resolved, transparent with respect to the
user.

XML Specifications

4/21/04

XML Specifications of all key components:
Configurator, Linker, scriptObjects, etc. This has
been chosen as a way to exchange information with
outside tools. CAST (CMS Analysis Specification
Tool) is a GUI for RunJob core based variants that
will communicate with core services using XML.

Support for Dynamic
Framework Ordering

4/31/04

Framework calls can optionally have dependencies to
specify an ordering instead of the current flat list.
RunJob core has a framework driven architecture.
Currently frameworks are specified in a default or user
provided list. Interactions with new external services
are usually represented internally by a framework call.
In order to facilitate introduction of new services into
a RunJob core framework, the representation should
support dependencies among framework calls and
allow for dynamic ordering. (Otherwise, user has to
become expert and choose correctly the entire
framework.)

Design and Implement Final
RunJob core syntax

5/7/04

The final language syntax for the RunJob core base
package is agreed upon and implemented. Users
typically interact via a macro script that interprets
macro commands line by line into calls on the RunJob




core API to build jobs or contact services. The macro
syntax itself is currently a mess and needs to be
brought under control. (Explore using plex, a Python
lexical analyzer, for this purpose.)

Common Batch Systems

5/15/04

Support for common batch systems like PBS, FBS, or
LSF. This is a “no brainer” and already exists in each
RunJob variant. Therefore this is an integration
milestone that will make sure that the environment

RunlJob core Release — I

5/15/04

First Major Release, RunJob core 1.0. All
experiments (CDF, CMS, DZero) should have basic
support for their local farms, applications, and
services.

LCG-2 Environment

5/21/04

Support for the LCG-2 Environment. This milestone
leverages CMS integration work needed by CMS
external milestone for use in RunJob core.

User Interface Prototyping

6/1/04

Leverage CAST work for RunJob core. This
milestone leverages work done in CMS for CAST for
the use of the CAST GUI for all experiments. CAST
is an Iris explorer style GUI that allows users to build
workflow/dataflow diagrams with a click and drag
interface and generate macro scripts to achieve them.

Web Services Architecture

6/1/04

A Web Services decomposition of RunJob core
services has been designed. This milestone

Context mechanism finalized
and implemented.

6/7/04

Contexts finalized with algebraic models for
composition. This is a feature introduced into the core
package that will enhance the specification of
constraints already found in the more basic concept of
contexts. While contexts can be composed informally
now by a simple Cartesian product and shadowing,
this functionality will guarantee users ignorant
(possibly willfully so) of local execution contexts that
their own private contexts can be used safely in that
environment or conflicts reported. . Contexts will be
used to organize and hide input parameters, so this is
important to the user that has to transparently manage
hundreds of input parameters without knowing all of
them explicitly,

Migration to RunJob core 1.0

6/15/04

Supported experiments migrate to RunJob core 1.0.
This milestone is special contingency needed to
upgrade each experiment to a new major release.

Support for Metadata Flow
Models

7/1/04

Support for multigraph constructs explored in GGF10
submission on workflow builders. This is a feature
introduced into the core package that will enhance the
specification of constraints already found in the
concept of contexts. The multigraph construct allows
for the design of more general constraint sets and
algorithms for resolving those constraints. Constraints
will be used to organize input parameters, so this is
important to the user that has to manage hundreds of
input parameters,

Architecture for fault tolerant
operation and job tracking.

7/7/04

An architecture for fault tolerant job creation,
tracking, running, and resubmission. This milestone
will address fault tolerance in a very narrow way: by
supporting a minimum level of job tracking needed to
support job resubmission. External databases will be




used where possible (SAM, BOSS, RefDB, etc.) but
an interface must be specified in RunJob and a stub
tracking system provided with limited functionality.

Runtime architecture
implemented

7/15/04

Support for runtime RunJob core architecture,
including job monitoring instrumentation. (See Dave
Evan’s shREEK architecture.)

Web Services Implementation

7/30/04

Implementation of Web Services model. This
milestone assumes that we are also able to find
facilities resources to keep the web services alive.

Integration with External
environments: GAE

8/7/04

Integration and support for ROOT clients based on
CLARENS. This milestone leverages work done in
CMS to bring a RunJob User Interface into a ROOT
environment. This would support batch style analysis
job specification directly from the familiar ROOT
shell environment. (CLARENS is a web services
standard that brings generic web services into a ROOT
environment. This depends upon the Web Services
decomposition.)

Support for Grid Operations in
RunJob core

8/15/04

Support for job submission using the Web Services
Resource Framework (WSRF). This will enhance grid
job submission and bring us up to date with GTK4.
(The WSRF and GTK4 are not expected until Fall
2004.)

MOP Integration

8/15/04

Integration of the MOP environment into ShahKar.
This will leverage work done by PPDG in the CMS
experiment to bring in generic grid submission
services using bare minimum Condor-G/DAGMan
and Globus 2.4 era gatekeepers.

RunlJob core Release - 11

8/15/04

Second Major Release, RunJob core 2.0. This release
should have full support for a variety of generic grid
environments and enhances user interfaces for
managing metadata and constraints. Continued
development in the experiments dealing with new
applications will be included as well.

Common Interface to catalogs

9/1/04

Support for interface into external catalogs for
metadata input and file inputs. (While we expect that
RunJob will support many such interfaces already by
this time, a common architecture will be developed
and implemented.) This could allow for
communication between different catalogs, such as
SAM and the CMS RefDB.

User Interface Finalized and
Implemented

9/7/04

User interface is implemented and finalized, both GUI
and non-GUI. This will be the final integration of the
CAST Tool into the RunJob core.

Migration to RunJob core 2.0

9/15/04

Supported experiments migrate to RunJob core 2.0.
This milestone is special contingency needed to
upgrade each experiment to a new major release.

Support for simple job
tracking in RunJob core

10/1/04

A simple job tracking mechanism or module that can
support job resubmission. We expect that this
functionality will already be in place in each
experiments’ codebase, but a common architecture for
doing job resubmission in the RunJob core will be
finalized and implemented here.

Fault tolerance implemented

10/15/04

The architecture for fault tolerance is implemented
and integrated with other systems like the simple job




tracker and provenance. The fault tolerance needs of
the experiments must be discussed. For the purposes
of RunJob core, we assume that this means the a user
is made aware of job failure and options for job
resubmission or cancellation are presented.

Provenance tracking in 10/21/04 | Provenance and meta-provenance to be recorded in
RunJob core XML database. Includes clients to browse
provenance. Provenance for example will track input
parameters for each application and meta-provenance
in addition will track the constraints. This provides
useful information not only about raw values, but also
about why the raw values are set the way they are.

RunJob core Release - 111 10/21/04 Third Marjor Release, RunJob core 3.0. This release
will have the final integrated

Integration with External 11/1/04 Provide VDL support and Sphinx environment

Environments: GriPhyN support. This will leverage existing CMS ability to

work with the Sphinx scheduler and generate VDL for
Chimera. This milestone depends upon support from
the GriPhyN or iVDGL project.

SC2004 Demonstrations 11/15/04 SC2004 Demonstrations

Migration to RunJob core 3.0 12/15/04 Supported experiments migrate to RunJob core 3.0.
This milestone is special contingency needed to
upgrade each experiment to a new major release.

Opportunities for Collaboration

The GridPP project in the UK and the PPDG project in the US are important contributors to the
pilot RunJob project. GridPP provided much of the integration and support effort on the Dzero
side, while PPDG provided experience and expertise on VDT environments. It is a GridPP
milestone to have users run analysis on SamGrid by 9/1/2004. And GridPP2 has just been
approved for 3 years. The establishment of a regular well defined interface for job building on
top of different local and grid environments presents an exciting opportunity for collaboration
with outside Computer Science groups wishing to work directly with the experiments. The
RunJob project essentially provides interfaces that the outside CS groups can leverage in order to
test new environments with existing experiment code.

Of course, the RunJob Project itself will not collaborate directly with any outside Grid group on
its own, but will do this instead through the experiments at the direction of the experiments’
software and computing management. The RunJob project exists to serve the needs of the
experiments and not to help external projects do R&D. However, if R&D effort is provided by
outside CS groups to the pool of Integration Developers, then they can effectively work with all
participating experiments at once. (For example, the milestones above include a “Virtual Data
Language” milestone. However, this milestone is left unfunded unless effort from GriPhyN or
iVDGL is found.)




Manpower Estimates

The milestones listed above, not including management overhead, require an estimated 40 man
months of effort’. Of that, approximately 10 man months of effort is dedicated maintenance and
integration tasks, 8 man months is additional boost required at the beginning to achieve
integration or initial experiments’ RunJob variants, and 22 man months for feature planning and
development. Over a nine month project span, this corresponds to an annualized level of effort
(LOE) of 4.4 FTE. In addition to this figure, an estimated 0.8 FTE (LOE) of project management
and 0.8 FTE (LOE) for core release management, unit testing, and technical writing, 0.6 FTE
(LOE) for dedicated on-project “end to end” testing and 0.6 FTE (LOE) integration testing
experts from the experiments is needed.

The effort sources listed below are coming from the RunJob project itself and the experiments.
The RunJob project itself will ask for 2.4 FTE (LOE) from the Computing Division itself plus 2.4
FTE (LOE) (0.6 FTE per participating experiment) for project management, release management,
testing, end to end testing, and core development. An additional 2.4 FTE (LOE) (0.8 FTE per
participating experiment) is asked for to support directly on-project the integration of the RunJob
core architecture into the experiments’ infrastructure. We estimate that most of the core
development effort could go away after the end of this project, depending on whether or not
additional features are requested or not during the course of the project.

Role FTE Estimate Sources Roles
(LOE for 9
month schedule)

1. Project Management 0.8 RunJob project PL/System Engineer

2. Release Management 0.8 RunJob project Code Librarian and

and Unit Testing Technical Writer

3. Feature Testing, End to 0.6 RunJob Project Quality Assurance

End Testing Engineer

4. Core Architecture, 2.0 RunJob project Chief Architect,

Planning, and Development Feature Engineer,
Core Developers

5. Integration Development 2.4 CMS, Dzero, CDF Integration
Developers

6. Integration Testing 0.6 CMS, DZero, CDF Special End Users,
Testers

(Note: “LOE” is annualized FTE. To get actual FTE in man years, multiply the LOE by schedule
length in years.) The distribution of manpower throughout the year will be a bump in the
beginning to achieve integration followed by a lower level of sustained effort. However, this also
depends upon the outcome of the requirements and negotiation phase with the experiments.

Effects of Schedule Changes
A first order formula for gauging the effect of schedule changes is as follows. The Level of

Effort for the management tasks (lines 1-2) is assumed to be constant. The Level of Effort for the
development and testing tasks scales (lines 3-6) to first order with the schedule length. Thus, the

? Bach feature or milestone above was given a SWAG estimate. These were summed and the final result
was inflated by 25% for contingency.




formula for Level of Effort is given by 1.6 + 4.2 / (Iength) where length is the desired schedule
length in years. However, it is not yet analyzed how much the LOE could be decreased while
maintaining the usefulness for the experiments. (We haven’t seen yet if this causes “critical”
milestones to slip.)

Schedule Length FTE (Level of Effort)
0.75 7.2
1.0 5.8
1.25 5.0

Conclusion

The RunJob project will be an important project in the Computing Division because it will draw
together and address common issues in three large experiments at the lab. With an initial cost of
developers to do integration and additional features development throughout the nine month
schedule, the RunJob project will provide a common system for job creation for the CDF, CMS,
and DZero experiments based on the existing RunJob core (ShahKar) product developed in the
RunJob pilot project. RunJob will help each experiment adapt their applications to diverse
resource environments and provide services to help track jobs, control production, or access data
catalogs. Although specific modules needed to address specific environments at the experiments
will still live in their respective RunJob variants, the task of integrating these with RunJob core
will be managed in the RunJob project itself. Communication with the experiments is a
significant feature of this project plan, and is perhaps the most important factor.

It also presents the exciting feature that Grid environments used in each experiment can be made
accessible to the others and made interoperable at a high level. The RunJob project can become a
place (in addition to facilities planning going on elsewhere and the important grid architectural
planning going on in GridPP and PPDG) where common planning of approaches to Grid
technology can be done, especially in the user interface. The Fermilab Computing Division is a
logical place to start this effort both because three big collider collaborations are based at
Fermilab (CDF, DZero, and USCMS) and because of the history that two of them already have
with RunJob development.




