ScriptObject Implementation Report

Greg Graham

22-March-2004

The new ScriptObject implementation is developed based upon architectural considerations circulated late last year by Anzar Afaq and upon a prototype developed for the DC04Configurators module in CMS. The implementation will be integrated both into the CMS McRunjob repository at CERN (DC04Configurators, ImpalaLiteScriptGen, ATS, MOP, and the JDLConfigurators) and into the ShahKar repository at Fermilab. The only loose thread is that the current implementation does not use the ShahKar Exception class: this will be done later. Finally, extra work has been done to make the ScriptObject interface backwards compatible to the old UserDict() interface. This should relieve integration stresses in all of the above mentioned CMS subsystems mentioned above except for DC04Configurators, which was the prototype.

The ScriptObject class satisfies the following requirements:

(1) Attribute Extensibility: It must store complete information about a job instance at the time after which all application level parameters and constraints have been resolved, but just before the execution environment has been chosen.

(2) Attribute Type Extensibility: In general, we do not know what information is needed for script objects in all experiments/environments, so interfaces must exist to add the information. This includes potentially supporting different types of attributes.

(3) Persistency: It must be persistent so that it can be saved and loaded for later execution.

(4) Transportability: It must be transportable so that it can be packed/unpacked for remote execution.

These requirements are dealt with in the following way. The basic data structure is an associative array (Python dictionary) that associates strings (keys) to objects (attributes). The attribute values themselves may have compound structure. The compound attribute structure is assumed to be understood by the application layer employing scriptObjects. In order to satisfy the persistency requirement, however, methods need to be registered with the scriptObject that can handle Save()/Load() operations for compound attributes. Attributes therefore need to be typed.

The persistency mechanism is to associate each scriptObject with a directory on the local system that contains a file called job.info plus any needed helper files. ScriptObjects are understood to Save() or Load() to or from this directory. Moving the scriptObject to a remote system consists of transporting the directory contents, This is a nice interface for MOP, and if one additionally uses tar/untar, it is also a nice interface for LCG based systems. Nonetheless, a single file or XML representation is also desirable, and it is noted that the ShahKar XMLP representation could be used for this.

Two primative attribute types are provided with the ScriptObject. The type “Ordinary” is a simple atomic attribute with a single schema element “Value”. The Ordinary type can be used to associate string values to string keys, for example. Persistent information about Ordinary attributes is kept in the job.info file. The other type which is provided is “SmallFile”. This type is intended to keep small text files, such as wrapper scripts or control files, internally in the scriptObject itself. The type has two schema elements “FileName” and “FileContents”, the latter of which directly contains the contents of the file. The Save() operation (registered to “SmallFile”) will save a copy of the FileContents into a file of name FileName alongside the job.info file in the persistent directory. Other types that are possible include “ExternalFile” which would contain metadata information about a file that is not contained directly in the scriptObject, LFNs and RLS contact strings, for example.

ScriptObject API

ScriptObject() :

Constructor takes no arguments.

AddItem(mdName, mdType, values=None, **keywords)

Adds an attribute of name mdName to the scriptObject. MdType must be a registered attribute type. (“Ordinary” and “SmallFile” are registered by default.) values is a vector of initial values to be used in initializing the attribute. The length of this vector must be equal to the length of the length of the attribute schema for the given type. If not given, each member of the attribute is assigned the string ‘null’. Finally, keyword initializations may be given if the schema element names are known.

GetAttributeType(mdName) :

Returns the type of the given attribute.

GetAttributeSchema(mdName) :

Returns the schema of a given attribute. This is also the order in which compound values from vectors are assigned to the attributes in AddItem interface above and SetAttributeValue interface below.

SetAttributeValue(mdName,values=None,**keywords)

Sets attribute value for name mdName. values is a vector of values to be used in assigning the attribute. The length of this vector must be equal to the length of the length of the attribute schema for the given type. If not given, each member of the attribute is assigned the string ‘null’. Finally, keyword assignments may be given if the schema element names are known.

GetAttributeValue(mdName,subSelect=None)

Gets the attribute value. If the subSelect is none, the result is packed into a vector of length equal to the attribute schema in the order determined in GetAttributeSchema(). If subSelect is a schema element name of the given attribute, then only that value is returned (and not in a vector.)

SetPersistentPath(path) :

Sets the persistent path of the scriptObject. Be careful that this is a unique path unless you want to mix scriptObjects.

SetAsExecutable(mdName):

Designates on of the existing attributes as the “executable”: it is used as a clue to the user of a scriptObject that wants to run it which file attached is the one to execute. This is also accessible through the Ordinary attribute “Executable” which comes by default. However, this interface should be used to set it since it performs additional checks.

Save():

Saves persistent info into the persistent path as described above.

Load():

Loads persistent info from the given persistent path as described above. If the scriptObject is bare (ie- just created) then attributes found in the job info file will be recreated on the fly. If the attributes already exist, then only the values will be loaded, but the attribute types must match between object and file.

RegisterAttributeType(mdType,schema,funcSave,funcLoad):

Registers a new type with the scriptObject. The given schema will be used internally, and the given funcSave and funcLoad will be used to Save/Load attributes of this type. The schema is a list of strings. The funcSave given must take (scrObj, mdName) as inputs where scrObj is a back reference to the scriptObject being saved and mdName is the name of the attribute being saved. FuncSave must return a string representation of the attribute to be saved in the job.info file including the mdName and the type. It should also do any other file saving/copying/moving/publishing needed by the type in question. FuncLoad must do the same in reverse. It takes (scrObj, mdName, mdLine=None) as parameters where mdLine is a formatted line from the job info file. The function should parse this line and set internal attribute values accordingly, and it should also do any other file loading/copying/moving/publishing needed by the type in question. If mdLine is not given, it will try to load it from the job.info file itself.

Comments from the code walk-through meeting of 23-March-2004:

Present: Dave Evans, Anzar Afaq, Eric Wicklund, Gerald Guglielmo, Peter Love, Greg Graham

Introductory Remarks by Greg

It was noted that the Python dictionary API was inadvertently left out of the implementation report. The dictionary API operates upon the subset of the ScriptObject attributes that are of “Ordinary” type. The regular API must be used to access other types. The philosophy is that if a user is expecting a dictionary interface, then it should act like a dictionary except for a small number of provisos listed below.

__setitem__(key,value):

Will check to see if the “key” is a recognized attribute of the scriptObject. If it is not, then an attribute named “key” is added of type “Ordinary”. If it is a recognized attribute, then a check is made to make sure that the type is “Ordinary”. If not, an exception is raised.

__getitem__(key):

Will check that the “key” is a recognized attribute of type “Ordinary” and raises exception if not.

__delitem__(key):

Will check that the “key” is a recognized attribute of type “Ordinary” and raises exception if not. Furthermore, in the constructor, certain attributes are listed as being “system” attributes that can never be deleted. If the user tries to delete one of these, the operation will fail with an exception.

Q&A

A general question was brought up about the data structure itself. This was explained as follows: the ScriptObject is a dictionary. Users must be allowed to add key/value pairs (called attributes) to this dictionary in order to specify a job. However, the attributes themselves may be more complex than a simple key/value pair. For example, a small file whose contents are directly contained by the ScriptObject is desirable. Therefore the attributes themselves are compound attributes. Though the ScriptObject will hopefully contain all kinds of compound attribute types, a type registration scheme was implemented to allow registration of new types. The scheme assumes that a compound attribute is itself a dictionary of key/object pairs. The collection of keys (the attribute schema) together with methods that can save/load that kind of attribute comprise the attribute type. Users can provide their own types and developers can add new types very easily. The mappings inherent in this picture are enumerated:

(1) {ScriptObject keys} ({Attribute Types}

(2) {Attribute Types} ({ (K, S, L) | K is a vector of keys, S is a function that saves values of K, L is a function that loads values of K) }

(3) {ScriptObject keys} ({ D | D is a dictionary with keyset K and arbitrary object values. }

It was concluded at the meeting that these two layers of indirection are needed to support compound attributes with arbitrary save/load functions.

We also had to remind ourselves what the ScriptObject was for: it is a “snapshot” of a Configurator state that can be used to abstract a job described by that Confiugurator. When talking about ScriptObject, we should keep in mind that we are designing ScriptObject and not re-designing Configurator. (We can do that in another meeting ;-)

Discussions of other Attribute types to include:

(1) Volatile type: Is just like an ordinary attribute but represents some temporary value that does not get recorded in the persistent form

(2) FileMetaBroker type: A type that takes advantage of the ShahKar FileMetaBroker sub-package. This can actually describe both small and large files. (The FileMetaBroker is a class which abstracts away the staging of files. Details are on the RunJob webpage at http:/projects.fnal.gov/runjob. A walkthough has not yet been scheduled.) There is also an FMBList class for lists of files.

(3) ScriptObject type: A type that can recursively contain other scriptObjects. This is considered useful in order to better support job chaining. (Julia Andreeva of CMS raised this concern. In this picture, Configurators would create atomic scriptObjects for specific application steps, and another Configurator would be in charge of collecting them into a master object. Potentially, no delegation is needed for this.)

(4) Environment type: A type that represents a fragment of a runtime environment. This would be a straight dictionary.

 A general comment that we should use “Dict” builtin type instead of “UserDict” class for inheritance. Dict is the builtin type. This is better for future because UserDict is (apparently) going away.

A general comment that this should be included in ShahKar as a subpackage. Though no-one from the d0Tools project (proper) was present, Dave knew enough about it to say that he felt ScriptObject could satisfy needs of the d0Tools as well. The subpackage structure of ShahKar is designed so that subpackages can be used independently of the ShahKar core itself. Exceptions across subpackages can be handled in the following way: each subpackage defines it’s own exceptions, and ShahKar-core package will trap exceptions from subpackages and re-emit a proper ShahKar exception where needed. ShahKar logger package can be handled in the same way.

Other “common objects” that should be represented somehow:

 -Directory Management

 -Executable? File Input List? File Output List?

I didn’t fully grok this at the meeting (sorry) so we should discuss it later. I think it is safe to proceed and add these into the mix later if needed.

Should we encourage subclassing? The safe consensus was that the ScriptObject class should be general enough for all uses and we should not encourage subclassing just to add attributes and/or types. Should we bring it under the management of a factory class instead? No, the same criticism applies. So we won’t subclass and we won’t manage it with a factory. (We’ll release it into the wild and see what people do with it ;-)

Should we use XMLP to create an XML file for persistency instead of the directory path? We should try XMLP, for exploratory purposes, but don’t put it into production yet.

 -How would it handle function references? This is unresolved.

 -Could we use XML browser to browse the script objects? Yes, but this would entail even more development. It is best to leave it alone for now. Though providing feedback as mentioned above is still OK.

A final comment from all: FINISH THE DEVELEPERS GUIDE!

Concluding Remarks

The existing scriptObject file will be augmented right away with requested attribute types: ScriptObject (job chaining), Volatile, and Environment. It can then be added to ShahKar directly as a subpackage and to CMS as a module. Other types will be added later. We will change the superclass from “UserDict” to “Dict” right away, and we will include it as a subpackage in ShahKar and start talking to d0Tools developers, and continue to talk to Francesco and other CMS developers to further integration efforts.

Addendum

An anomaly that came up during the implementation of the ScriptObject attribute type is that if a child script object had a non-standard attribute type, then it could not be loaded recursively because the Load function didn’t know about the non-standard type. To fix this, the Load function will now use the root ScriptObject as a reference for which attribute types are available during load. In pseudocode:

Before:

S1= ScriptObject()

S1.AddItem(‘SubScript’,’ScriptObject’)

S2=ScriptObject()

S2.RegisterAttributeType(‘NewType’,schmaList,funcSave,funcLoad)

S2.AddItem(‘NewItem’,’NewType’)

S1.SetAttributeValue(‘SubScript’,ScriptObjectRef=S2)

S1.SetPersistentPath(‘test’)

S1.Save()

S3=ScriptObject()

S3.SetPersistentPath(‘test’)

S3.Load() # Error: Unknown Type: NewType !!!!

After:
In the LoadScriptObject function, we have added the following logic:

(1) Check the available types of the calling scriptObject

(2) Check the available types in the newly created (about to be loaded) scriptObject

(3) Add to the new scriptObject all of the types in the old scriptObject that are not already in the new scriptObject

So with the addition of the line “S3.RegisterAttributeType(‘NewType’,’schmaList,…)” just before the S3.Load(), it will now work.

Note that the persistency mechanism does NOT save types, and the user or applications designer is still expected to do that explicitly as above.

