Description, Design and Usage Scenarios

of scriptObject class in Runjob

M. Anzar Afaq

anzar@fnal.gov
January 9, 2004

Introduction

As obvious, the purpose of a scriptGenerator is to generate executable “job-scripts” for a specific environment like bash/Condor/MOP/EDG. Production jobs, in general, represent a set of executable scripts working coherently at runtime. They facilitate the setup of proper runtime environment for the execution of a particular production executable, along with providing input parameters. The term of “sandbox” is commonly used to represent set of all scripts, cards, environment etc files that a job would ever need at runtime, for complete execution. The purpose of introduction of a separate class that contains all related pieces composing a job is to create such a logical entity during life time of a Linker operation.

Composition of scriptObject

A scriptObject will represent a self describing, self contained production/analysis job, that could be translated into executable “scripts” for certain execution environment.

In general scriptObject should contain the information required to build an environment to run a production job, not the script itself, though in some cases, actual scripts, or pointers to actual scripts could be contained, for simplicity.

There can be several approaches towards composition of a scriptObject. For the sake of generalization, a scriptObject can be a simple dictionary object, containing NO pre-defined key-value pairs. Every environment can build a scriptObject for itself, known to all components in its subset. All the properties, constraints, identification water-marks could be well defined in scriptObject class within this subset. For example a CMS subset can define a CMSscriptObject, and similarly for DZero and CDF.

[image: image1.jpg]ScriptGen 1

ScriptGen 2

ScriptObject(s)

(name, location,
executable, count, input,
output)

LINKER

Figure 1: Information sharing between scriptGenerators via scriptObject.

Each file, or file to be, in a scriptObject can be represented in several different ways. It could soley be contained as a string object, an XML representation string object, pointer to a file sitting on filesystem, physical filename PFN, or logical filename, LFN. Each file can also be represented as an Object, defined seperately, describing a file, including but not limited to its transport mechanism. Such an object could be called File Meta Broker (FMB).

[image: image2.jpg]ScriptGen 1

ScriptGen 2

ScriptObject(s)

FMB | FMB | FMB | FMB

LINKER

Figure 2: Information sharing between script Generators via scriptObject.

More than one scriptGenerators, Configurators could manipulate, transform same set of scriptObject(s). For example a scriptObject, populated by one scriptGenerator with information regarding a specific job, could be translated into real executable script(s) by another scriptGenerator. This will delay creation of actual scripts till all scriptGenerator are done processing a particular set of scriptObject(s). This can facilitate translation and adoption of same jobs for several different execution environments, including various flavors of GRID.

Like any other object, scriptObject should provide a simple API, and may also be serialized/de-serialized in XML.

CMS Production Runjob and scriptObject

The major components of CMS Production environment are ImpalaLite, EDG and MOP, along with a set of Configurators that facilitate job execution for specific environments like FBS, PBS and Condor etc.

[image: image3.jpg]ImpalaLiteScriptGen

FBS/PBS/Condor

LOT ofinfo lowang by all
othes neans

EDGJobGen MOPDAGGen

ScriptObject(s)

LINKER

Figure 3: Current state of affair for CMS Production Runjob system.

In context with scriptObject, a CMS script generator could be visualized that create a set of memory based scriptObject(s) for each job that needs to be executed on one of the target environments, including ImpalaLite. Than each environment adopt/translate each of the scriptObject for itself. There will be no relation, dependency of any environment on the other. Each environment will read-in scriptObject(s) from CMSScriptGenerator and transform according to its own specific coordinates.

[image: image4.jpg]CMssScriptGenerator

ImplalalLit;

MOPDAGGen

EDGJobGen

[~ scriptobject(s)

Fue | Fve | Fue | P

LINKER

Figure 4: A better approach for CMS Production system.

This is interesting to mention that currently ImpalaLite scriptGenerator is trying to play this role upto a limited extent. It is highly dependent on file based tracking, which is not even used in environments like MOP. So if CMSScriptGenerator is introduced, file based tracking will come only as an optional flavor, may be turned off in environments like MOP and EDG.

Also a major drawback is loss of maintainability and transparency of code among several environments, in multi developer, geographically distributed development. Any change in one environment can easily affects all other environments. Introduction of “contexts” is to help eliminate this pain, but is limited to macro-scripts. Modularity was also introduced by runtime type casting and delegating of script generation functionality to various environments. But still everything is file based, and doesn’t solve the main problems faced by the development teams. The true sense of modularity can be easily achieved by introduction of scriptObject(s).

Following type of information could be stored by scriptObject:

job_file

ParamFile1, ParamFile2….

ProductionCycle

InputFile1, InputFile2….

MCJ Number

Inputfile Type

No of Input files

Outpout file names

Status (submitted, created, running)

InputMetaFiles

PAGE
4

