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Ethos of MCRunjob
• Applications in complex production processing environments 

often need to be tamed
– Hundreds of input parameters during MC Production
– Heterogeneous runtime environments
– Complex multi-application workflows
– Dependencies and relationships among the metadata often modeled inside 

of obscure shell scripts

• MCRunjob captures such specialized knowledge and makes it 
available to non-expert users
– Metadata and schema oriented descriptions
– Tracks dependencies among metadata 
– Tracks synonyms between groups of metadata, versions
– Organization of user registered functions that do the actual work
– Framework driven organization of tasks



Ethos of MCRunjob

Production
Jobs

Data Provenance

MCRunjob: Abstract Workflow

App A App B App C

SAM DB

CMS RefDB

Tracking DB

Workflow
Descriptions

and
Production 
Requests

Executable
Script

DAG
or 

VDL

MCRunjob uses a modular component based architecture. 
Schema Modeling: Each application or task has its own schema representation.

ScriptGeneration:Each target script environment has its own generator.
External Services: Each service or interface is described internally by its schema.  



MCRunjob Project
• In use at DZero since 1999 and at CMS since 2002.

– Supported by respective programs.
– For MC production only so far.

• DZero Monte Carlo Challenges (CHEP 2001)
• CMS Integration Grid Testbed (CHEP 2003)

• We are considering a joint DZero/CMS project to address common issues 
at Fermilab soon
– The actual code bases have diverged somewhat, but there is a common 

repository that was started in 2003.  
– Joint project name: Shahkar 

• (which is Urdu for “Great Job”)

• Exploring ways to integrate with experiment frameworks.
– There is some integration with DZero framework already going on
– Need to explore ORCA interactions  



Architecture of MCRunjob
• There are three major components of MCRunjob

– Configurator: 
• A container for schema describing some well defined application input, task, or 

external interfaces to DB or grid services
• Implements framework interfaces
• Register functions to handle framework calls, extend own interface, extend schema, 

define rules and dependencies to construct values for parameters.

– Linker
• a container for Configurators, checks dependencies, enables inter-configurator 

communication. 
• a container for “script objects” generated by Configurators
• Runs the framework 

– ScriptGen
• Mixin class for Configurators that adds methods for script object generation and 

framework method delegation

• All components are implemented in Python
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scripts used to run the 

corresponding application.
The scripts are collected by a

ScriptGen object.
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Configurator Functionality - 1 
• Configurators re-implement the UserDict() interface with built-in triggers on 

reads and writes
– Schema elements must be declared before use
– Triggers are typically defined in the constructor, but can be added dynamically 

also.
• Interfaces exist to extend the schema of a Configurator

– Also possible to “lock” the schema to prevent further alterations.
• Parameter values can reference other Configurators

– Inter-Configurator parameter lookup is implemented using a global read trigger 
on all of the schema elements.  

• Different lookup behaviors (ie: CMS vs. DZero) possible by defining different triggers. 

• Dependencies on other Configurators are explicitly declared
– This is required for parameter lookup in the CMS implementation



Configurator Functionality - 2
• Construction of parameter values

– User can register functions, keyed by schema element,  that will be called by the 
read trigger

• eg- Filename rules, RunNumber rules, Random Seed rules, etc.

• Framework handling
– Handling of framework calls can be done in specific methods organized by 

inheritance
• This is considered deprecated, but it is not disallowed.

– User can register functions to handle specified framework calls.
– User can also specify delegation of framework calls to other Configurators that 

satisfy the ScriptGen interface
• Useful, for example, when trying to gather all related script generating functions into a 

single module

• Inheritance
– Configurators are grouped by inheritance according to experiment or function

• Eg- Dzero vs. CMS, Generator vs. Processor, InputPlugins, etc.



Configurator Descriptions and 
Namespaces

• Configurators themselves are also described by an extensible list 
of key-value pairs. 
– Class ConfiguratorDescription( key1=val1, key2=val2, etc ) 
– This is useful to assign “meta-metadata” to the grouping of application 

metadata 
– But also: parameters are specified globally in a Linker space by name and

ConfiguratorDescription. 
• eg- ::ConfigDesc:ParamName

– And: The ConfiguratorDescriptions also function as namespaces
• To keep namespaces distinct, one can also give them arbitrary aliases.  This 

mechanism is also used to distinguish Configurators of a common type inside 
of the Linker space.

– Studying whether Configurators should contain themselves.
• A pilot project at DZero is studying this.



Linker Functionality
• Container for Configurators and “script objects”

– Linker guarantees that dependencies are satisfied by adding 
Configurators in serialized order.

• Exception thrown when this is not satisfied.

– A script object may be a bash script, a derivation inVirtual Data 
Language, a DAG node, etc.

• Also runs the framework methods.  Examples:
– PreJob: runs before each script object
– MakeJob: creates each script object
– Reset: runs between script objects
– RunJob: Submits a suitable “script object” to some Grid interface 

or batch queue

• Framework methods are also user definable and user 
callable.



ScriptGen Interface
• Implemented as a mixin class for Configurators
• Specifies methods for generating scripts

– HandleFrameworkCall: a callback for Configurators to delegate handling 
of framework calls; mainly those that generate script objects

• Used so that all related “script generating” code can be gathered into a single 
module.

– MakeScript: a method called by the linker to collect related script objects 
into a composite script object.

• Example ScriptGen objects: 
– Impala scripts (CMS MC production scripts)
– RCP based scripts at DZero
– Virtual Data Language of Chimera
– MOP DAGs for Condor-G/DAGMan

• A Linker can support multiple ScriptGen objects simultaneously



Macro Script Language
• The Linker has a facility to read “macro” scripts and parse lines 

one by one 
– Functions available include: 

• Attaching and naming Configurators, setting parameter values, adding schema 
values, defining synonyms, executing the framework or selected framework 
calls, executing selected methods, exception handling, executing other scripts

– Procedural constructs supported for handling multiple jobs. 
• Parsing is done by Configurators themselves

– Users (experienced ;-) can extend the “macro” script interface by registering 
their own parser functions to the Configurators. 

– Multiple Parsers can be attached; first Parser to handle the line “wins”

• Many things are missing: 
– Full functionality is not yet available in the “macro” language
– Needs parser that supports both expressions and conditionals 
– Syntax needs to be reviewed as a whole. 



Synonyms and Ontology 

• Configurators also contain an internal synonym table to 
automatically keep track of translations between schema 
elements of different Configurators
– Example:

• cfg CMSIM synonym RanSeed1 ::generator:CMKIN:RunNumber
• cfg CMSIM print

– Causes resolution of RanSeed1 by synonym lookup when parameter 
is not given

• implicit synonyms- when schema elements have the same name
– eg- I didn’t have to say                                                  

“synonym RunNumber ::generator:CMKIN:RunNumber”

– These ontological definitions can be stored in files or database tables.
– These can be used to “connect” Configurators across different versions 

or interface definitions on the same Configurator.



Stored Commands

• Configurators can also have a user specified list of stored 
commands to execute during framework operation
– These commands are in the macro script language
– Eg- cfg CMSIM addcommand on reset inc RunNumber 

• When “reset” framework method is invoked, the command “inc RunNumber” 
is invoked on the CMSIM Configurator.

• The CMSIM Configurator has to have a Parser registered to it that can 
interpret “inc RunNumber”

• Together with synonyms and parameter lookup, stored 
commands can allow Configurators to track dynamically 
changing values in other Configurators.



MCRunjob at Runtime: SAM/JIM

• Innovations from SAM/JIM grid 
execution service for Dzero
– XML based monitoring wrappers
– XML database backend for 

persistent storage of jobs
– Linker running as a server with 

GSI authentication
– Macro preprocessor for abstract 

planning
– Interface with SAM database 

production request system



Production Job Configuration 
Management

• Application designer: 
– writes down schema needed to configure desired application or task 
– writes ontological configuration files to define dependencies, 

synonyms, and chain behaviors
– writes down ontological configuration files to handle possible version 

changes in schema

• Application deployment:
– writes configuration files to define physics parameters, number of 

events, production assignments.

• Regional Center Contact:
– writes configuration file for his/her regional center (if applicable) 



Fun with Configurators
• LNameStreamConfigurator

– Can register a function to this Configurator that will fill a 
LogicalNameList with names (eg- LFNs, PFNs)

– During framework operation, this Configurator will iterate over the list, 
setting the schema element “OutputSpec” to the current value.
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• InputPluginConfigurator
– InputPluginBashFile will 

parse environment variable 
definitions in a sh script and 
expose these by including the 
symbols as schema elements 
with the corresponding values

– InputPluginRefDB will obtain 
schema elements and values 
from a web server with 
database backend



Fun with Configurators
• RogueConfigurator

– No schema whatsoever- user defines it all at runtime!

• TableConfigurator
– Derives from LNameStream, but has multiple schema elements.  Can 

read from a table file or a database table and iterate over the rows

• ParamSweepConfigurator
– Similar to a TableConfigurator, but has added logic to generate its own 

table internally according to some rules.

• MOPDagGen
– A ScriptGen Configurator that takes scripts generated by other 

ScriptGens, turns them into DAG nodes, and creates a master DAG.

• RunJobConfigurator
– Takes specified script object, submits it to batch interface or grid portal.



No Tool is Complete Without a 
GUI

• MCRunjob has a Tk based GUI that functions as a wrapper 
around existing MCRunjob classes
– No special classes needed: there is a single GUILinker wrapper class 

and a single GUIConfigurator wrapper class.

• Configurators have a “hot swappable” internal dictionary 
implementation
– TK GUI Linkage is accomplished using the “HotSwap” method to 

replace the default internal UserDict with one that has Tk linkage.
– Other GUI packages are possible by writing new wrapper classes and, 

perhaps, new dictionaries with different Linkage.

• Screenshot of GUI is next:



No Tool is Complete Without a 
GUI



Relationship to Other Projects

• SAM
– One of the first great applications of MCRunjob was to automatically 

generate the metadata needed by the SAM system in order to store MC 
production results.  

– Closer integration with SAM is proceeding apace in the context of 
automatic generation of MC jobs from request metadata stored in SAM

• CHIMERA 
– MCRunjob has a ScriptGen which produces Virtual Data Language
– Conceptually, Configurator schemas are like transformations, 

Configurators with values are like derivations, and 
ConfiguratorDescriptions and dependencies define “types” on the data 
appearing at the endpoints of a transformation.

– MCRunjob can either generate VDL, VDL+wrapper scripts (custom 
transformations), or function as an abstract planner.



Relationship to Other Projects

• SAM/JIM
– In the JIM grid execution environment, MCRunjob scripts are sent as 

the job instead of shell scripts or conventional executables.
– MCRunjob macro scripts are GSI-authenticated and re-parallelized by a 

remote MCRunjob Linker process.  
– Delayed abstract planning!  

• Data Provenance
– MCRunjob is already capable of a fully declarative specification of 

workflow, and can communicate with external databases and servers.
– Besides a bare specification of parameters, MCRunjob keeps track of 

the dependencies that existed among parameters when they were 
created.



Future Plans
• Formalize the DZero/CMS joint project 

– Shahkar
– Language Definition

• Continue close cooperation with GriPhyN and better integrate 
MCRunjob into the Chimera environment.
– Add tools to define wrapper scripts with transformations
– Delayed abstract planning

• Add features:
– Configurators for generic application monitors (BOSS) 
– Grid portals (currenlty MOPDagGen and VDLScriptGen)
– XML representations and XML database

• Explore runtime functionality 
– Provenance, external parameter lookup services, and application 

monitoring services in experiment frameworks? (ala GANGA?) 



Conclusions/Questions

• MCRunjob provides functionality to model complex 
workflows found in MC Production.
– Is it possible/desirable to bring this to a finer granularity needed in 

analysis?

• MCRunjob is a powerful workflow planner with modular 
component based interfaces to external services. 

• Prpearation for Analysis
– Take it from a former Kaon physicist: Sharpening our understanding of 

MC production processing still has much to teach us about the more 
complex environments expected in physics analysis.  

• Understanding the behavior of the underlying Grid services and the 
coming challenges of knowledge management in the face of clean 
predictable input and measurable results still has value. 
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