
SAM_MIS Architecture.

Event Handling Sequence:

The following UML Diagram illustrates the basic sequence of interactions involved in a typical transaction between an event producing
client and the server.

The Event class (Event.py) will receive a processEvent() request and look up the appropriate EventHandler using the EventConfigManager.
It then registers this config manage for future use. If there is already an event handler registered, it uses this rather than consult the config
manager again.

If the EventConfigManager does not know how to deal with the Event, the MIS can consult it's peers to try and download a new
EventHandler, if none of the peers have a handler, the default event handler is used.

The event is then passed to the appropriate event handler for processing.

Configuration:

Configuration is handled by subclasses of the ConfigManager classes.

Each of the various managers can be found by consulting the Singleton MainConfigManager class. Each manager implements the same
interface and reads its initial configuration from a file passed as a command line argument (CONFIG_FILE_ARG_ and
CONFIG_DIR_ARG_). This config file is in the format of a python dictionary.

Event Handlers:

Events and Event Handlers follow the architecture below. There are currently 4 event handlers, each derived from EventHandler. Each
EventHandler is a singleton class. New event handlers can be downloaded from peers by calling getEventHandler on another EventServant.

The Event class is responsible for handling Event.Descriptions (Event.Description is a struct defined in Event.idl) which are passed to its
processEvent method as indicated above. An EventDescription has two attributes, EventType and EventData. The EventType is used to
determine the handler, the EventData attribute can be of any type (String, Dictionary, etc..), depending on the EventType. It is up to the
Handler to narrow it to the correct type.

CORBA

Network communication is done using CORBA. The CorbaManager.py class contains CORBA helper functions. It manages things like
resolving the root POA, initializing the ORB, etc. It also looks up the naming service, using a parameter it looks for first on the command
line, then the config files. You can then use it to resolve and bind objects to names.

The initial reference to the server is obtained by the client using CorbaManager's resolveNameString method, (the exact name it looks for is
hard coded into the client). The returned object is a CORBA.Object type, and the client needs 'narrow' them to the correct type.

There is also a CORBA manager subclass, ServerCorbaManager, this adds the method listen(), which is used to wait for incoming requests
to the ORB., and a getPOA() method which returns the root POA.

There are only two objects being used remotely. These are Event and ServantCreator. These two classes have an IDL interface which can be
found in sam_idl/sam_mis (check out the sam_idl package from CVS).

With OmniOrb, you can compile these interfaces to python – you need sam_mis and corba_common checked out, and omniORB installed,
then use a command like “omniidlrun.py -I/home/sam/corba_common -I/home/sam/sam_idl/ -bpython *.idl”

This creates Event_idl.py and ServantCreator_idl.py, which are put in the SAM_MIS__POA and SAM_MIS packages. These _idl files are
the POAs for the classes, and manage the marshaling and unmarshalling of data but provide none of the implementation.

The implementation is provided by Subclasses of the SAM_MIS__POA.ServantCreator and Event classes defined in the automatically
generated python files, EventImpl.py and ServantCreatorImpl.py. These actually act delegate all their methods to Event.py and
ServantCreator.py.

To run the MIS server, you need sam_idl_pylib setup, which provides the python stubs to all the sam interfaces, including the SAM_MIS
ones, so you do not need to compile your own.

