Notes on the Monitoring and Information
Service

Matt Leslie, Petr Vokac, Mariano Zimmler, Adam Lyon*,
Sinisa Veseli

21 July 2004

1 Running the MIS server on d0cs005

Right now, the standard MIS server runs on d0cs005. Below are instructions for
starting and stopping the server.

1.1 Starting the MIS server

Log into d0Ocs005 as sam

Check if the MIS server is running with ps —fwwwu sam | grep —-v nysql
cd /home/ sanf sam i s/ src/ pyt hon

source setups

pyt hon m sServer. py

Note that the current configuration sends output to your window. You should
not close this window without stopping the server first.

1.2 Stopping the MIS server

If you are at a window with the MIS server running in the foreground, put it in
the background with,

Type control - Z to suspend the foreground server

Type bg to put it in the background

Proceed with the 5th step below

To stop the MIS server, do

Log into d0Ocs005 as sam

Check if the MIS server is running with ps —f www sam | grep —v nysq|
cd /home/ sam sam m s/ src/ pyt hon

source setups

1 Alert Adam at lyon@fnal.gov if changes are needed for this document.

pyt hon shutdownC i ent. py Server Nane=SAMM S@0cs005 Passwor d=a

1.3 Clearing the MIS backend database

One can remove all data from the MIS backend database by running the
cl ear DB. py script in the / hone/ sam sam i s/ sr ¢/ pyt hon directory.

2 Running projects on the Test Harness

Please coordinate with Adam if you want to run projects on the test harness.

The test harness runs on dosrv002. You can only log in as SAM on that machine.

Whenever you log into dosr vo02, you must do the following steps right away,

Log into dosrv002 as sam
cd /hone/ sanf cabsrv2th
source sourceMe # This step is very inportant

Check that the station is running before starting projects with,
sam dunp station —projects

If the station is not running, ask Adam to give it a kick.

2.1 Running a project on the test harness

The following set of commands will run one project on the test harness. The
project will ask for 10 files, and sleep for 60 seconds after receiving each file. The
test harness will automatically make a dataset for you.

cd new test _harness/mstl
pyt hon Test Har ness. py | aunchOne. xm

The ni st 1 directory can get filled with lots of stuff. You can safely delete the
following files when no projects are running:

t hl og*.t xt
@. py*

test*. htm
sam bat ch*

3 Analyzing the MIS backend DB

The MIS installation is configured to save events to a backend MySQL database.

3.1 Events DB Schema
Event information are spread among three tables.

The EVENT table contains basic information about the event:
DBI D is the numerical ID of the event. This is assigned by the database in
ascending order.
| Dis the full text ID of the event as assigned by the event producing
application.
TYPE is the category of the event. (e.g. Fi | eLocat i onSel ecti onEvent)
TI ME is the time that the event occurred in “seconds since epoch”. You will
need some function to convert it into a real time.
PARENTI D is the full text ID of the parent event. Events may have a
hierarchical structure (e.g. the station send a Fi | eTr ansf er Event and then
spawns an eworker process. The events from the eworker have the
Fi | eTransf er Event as their parent).
PRODUCERI D is a text ID of the application that sent the event. Only EWORKER
seems to be filling this in right now.
DI CTI ONARYI D is a link to the EVENTDI CTI ONARY table for more information
about this event.

The EVENTDI CTI ONARY table contains information that was sent with the event.
DI CTI ONARYI D is the ID# used to associate dictionary items with an
event. See the EVENT table. All dictionary items that come from the
same event will have the same DI CTI ONARYI D.
KEYI D is the link to the DI CTI ONARYKEYS table. Use it to determine the
key name for the value you are interested in.
VALUE is the value of the dictionary item.
DI CTI ONARYVALUEI D is used if a “subdictionary” was passed in with the
main dictionary. The DI CTI ONARYVALUEI D corresponds to more
DI CTI ONARYI Ds With the sub dictionary information.

The DI CTI ONARYKEYS table contains the key names for dictionary values.
KEYI D is the ID# for a particular key. See EVENTDI CTI ONARY.
DI CTI ONARYKEY is the name of the particular key

3.2 Sample SQL

Below is some SQL that can be used to obtain information from the MIS backend
DB.

3.2.1 Information about a particular event
Given an event DBI D, return the main EVENT information.

select * from EVENT where dbi d=19

DBI D 19

ID SPFTE__ EWORKER@Osr v002. f nal . gov: 12849 1090278018__2
TYPE St art Physi cal Fi | eTr ansf er Event

TI ME 1090278018

PARENTI D FTE__EWORKER@I0sr v002. f nal . gov: 12849__1090278018__1

PRODUCERI D EVWORKER@I0sr v002. f nal . gov: 12849
DI CTI ONARYI D 31

To get the dictionary information (printing out the dictionary keys and values)
for this event, do

sel ect e.dbid, k.DI CTI ONARYKEY, vVv.val ue,
v. DI CTlI ONARYVALUEI D
from EVENT e, EVENTDI CTlI ONARY v, DI CTI ONARYKEYS k
wher e e. dbi d=19 and
v.dictionaryid = e. D CTI ONARYI D and
v. KEYI D=k. keyi d

dbid DI CTI ONARYKEY val ue DI CTI ONARYVALUEI D
1 19 Event Type St art Physi cal Fi | eTr ansf er Event {nulI'}

2 19 Fi | eNanme cosm cs_0000140346_002. r aw {null}

3 19 Sour ceLocat i on {nulI'} 32

4 19 Tar get Locat i on {nul I'} 33

5 19 Target Locati onType Station {nulI'}

6 19 Sour celLocati onType MsS {null}

Note that some of the values are null, but these have entries in
DI CTI ONARYVALUEI D filled in. That means these entries are sub-dictionaries. To
view them, do

sel ect e.dbid, k.D CTI ONARYKEY, k1. D CTI ONARYKEY,
vl1l. VALUE
from EVENT e, EVENTDI CTI ONARY v, EVENTDI CTI ONARY v1,
DI CTI ONARYKEYS Kk,
DI CTlI ONARYKEYS k1
wher e e. dbi d=19 and
v.dictionaryid = e. Dl CTI ONARYI D and
k. KEYI D = v. KEYI D and

v.dictionaryvalueid is not null and
vl.dictionaryid = v.dictionaryval ueid and
k1. KEYI D = v1. KEYI D

dbid DI CTI ONARYKEY DI CTI ONARYKEY VALUE
1 19 Sour celLocati on Sour ceVol uneLabel prj 029
2 19 Sour celLocati on Sour ceMSSNane enstore
3 19 Sour ceLocat i on Sour ceFi | eOF f set 10
4 19 Sour ceLocat i on Sour cePat h
/ pnf s/ sani beagl e/ copyl/ dat al ogger/initial _runs/datal ogger/all/all
5 19 Tar get Locati on Target Pat h / sam cachel/ boo
6 19 Tar get Locat i on Tar get Node dOsrv002. f nal . gov
7 19 Tar get Locat i on Target Stati on fnal - cabsrv2t hm s

The first DI CTI ONARYKEY corresponds to the name of the sub-dictionary. The
second is the key for the particular value.

3.3 Doing SQL queries from python

The wsQ@.db python module allows you to query a mysql database from within
python.

If you are logged into d0cs005, in your python script do the following:

i mport MySQLdb

Make connection to the database
db = MySQLdb. connect (user="sanmi, passwd=' samandeggs’, db="SAM)

If you are logged into another machine (ask Adam to install MySQLdb if it is not
there), then you need to first set up an ssh tunnel to d0cs005. Do the following

from your shell prompt (you will first need to get a Kerberos root ticket)...
ssh —N —L 3307: d0cs005. f nal . gov: 3306 sam@0cs005. fnal . gov &

Note that we use port 3307 instead of the default port of 3306 in case your
machine has its own mysqgl server running. Then you set up python with

i mport MySQLdb
Make connection to the database (note you only specify the port, not
the host nane)

db = MySQLdb. connect (user="sam, passwd=" sanmandeggs’, db="SAM,
port =3307)

In either case, now you use a database cursor to perform SQL commands. For
example,

cu = db. cursor()

sql = “select * from EVENT where dbi d=19”
nrows = cu.execute(sql)
print nrows # Returns 1

The nrows variable is filled with the number of rows that satisfy the query. To get
the result itself, use the cu. f et chone() to get one row at a time (each successive
call gets the next row). To get all of the rows as a list, do cu. f et chmany() .

For example, if you did the calls above and then did,

results = cu. fetchmany()
print results

The output would be

((19L, ' SPFTE__EWORKER@Osrv002. fnal . gov: 12849__1090278018__2',
"Start Physical Fil eTransferEvent', 1090278018L

' FTE__EWORKER@IOsr v002. f nal . gov: 12849 1090278018__1',

" EWORKER@I0sr v002. f nal . gov: 12849", 31L),)

Note this is a list of a list (if there were more than one row returned, each row
would be an entry in the main list).

If you are doing an operation that changes the database (INSERT, UPDATE,
DROP, CREATE, DELETE), then you must call db. conmi t () to have those
changes take effect. If you haven’t committed and want to undo the changes, do
db. rol | back(). Once you commit, you cannot undo the changes.

When you are done working with the database, you should always do
db. cl ose()

4 Notes on Test Harness configuration

This info is more to remind Adam about the complicated configuration.
To run the MIS enabled station on the test harness, the following were
configured:
The station sam configuration is mi s-i nt.
The stager sam configuration is mi s- i nt - wor ker .
Note that the new style DB server is used, so to set it up, you must do
sam -t —q ms-int (seethesourceMe file).
Note that special versions of sam_batch_adapter_pyapi,
sam_common_pylib, sam_idl_pylib, and omniORB are needed. Again, see
the sour ceMe file.
Note that the station code was placed in
/ fnal / ups/ prd/ sam st ati on/ Li nux- 2- 4/ sam st ati on_ni s (though the ups

db is within / hone/ sant cabsr v2t h/ upsdb). It was put there because the
sam_station executables are needed on all machines but there was no
room in the home area. It can’t stay like that forever.

