
 1

Notes on the Monitoring and Information
Service

Matt Leslie, Petr Vokac, Mariano Zimmler, Adam Lyon1,
Sinisa Veseli

21 July 2004

1 Running the MIS server on d0cs005
Right now, the standard MIS server runs on d0cs005. Below are instructions for
starting and stopping the server.

1.1 Starting the MIS server
• Log into d0cs005 as sam
• Check if the MIS server is running with ps –fwwwu sam | grep –v mysql
• cd /home/sam/sam_mis/src/python
• source setups
• python misServer.py

Note that the current configuration sends output to your window. You should
not close this window without stopping the server first.

1.2 Stopping the MIS server
If you are at a window with the MIS server running in the foreground, put it in
the background with,

• Type control-Z to suspend the foreground server
• Type bg to put it in the background
• Proceed with the 5th step below

To stop the MIS server, do

• Log into d0cs005 as sam
• Check if the MIS server is running with ps –fwwwu sam | grep –v mysql
• cd /home/sam/sam-mis/src/python
• source setups

1 Alert Adam at lyon@fnal.gov if changes are needed for this document.

 2

• python shutdownClient.py ServerName=SAMMIS@d0cs005 Password=a

1.3 Clearing the MIS backend database
One can remove all data from the MIS backend database by running the
clearDB.py script in the /home/sam/sam-mis/src/python directory.

2 Running projects on the Test Harness

Please coordinate with Adam if you want to run projects on the test harness.

The test harness runs on d0srv002. You can only log in as SAM on that machine.

Whenever you log into d0srv002, you must do the following steps right away,

• Log into d0srv002 as sam
• cd /home/sam/cabsrv2th
• source sourceMe # This step is very important

Check that the station is running before starting projects with,
sam dump station –projects
If the station is not running, ask Adam to give it a kick.

2.1 Running a project on the test harness

The following set of commands will run one project on the test harness. The
project will ask for 10 files, and sleep for 60 seconds after receiving each file. The
test harness will automatically make a dataset for you.

• cd new_test_harness/mist1
• python TestHarness.py launchOne.xml

The mist1 directory can get filled with lots of stuff. You can safely delete the
following files when no projects are running:

• thlog*.txt
• @*.py*
• test*.html
• sam_batch*

 3

3 Analyzing the MIS backend DB
The MIS installation is configured to save events to a backend MySQL database.

3.1 Events DB Schema
Event information are spread among three tables.

The EVENT table contains basic information about the event:

• DBID is the numerical ID of the event. This is assigned by the database in
ascending order.

• ID is the full text ID of the event as assigned by the event producing
application.

• TYPE is the category of the event. (e.g. FileLocationSelectionEvent)
• TIME is the time that the event occurred in “seconds since epoch”. You will

need some function to convert it into a real time.
• PARENTID is the full text ID of the parent event. Events may have a

hierarchical structure (e.g. the station send a FileTransferEvent and then
spawns an eworker process. The events from the eworker have the
FileTransferEvent as their parent).

• PRODUCERID is a text ID of the application that sent the event. Only EWORKER
seems to be filling this in right now.

• DICTIONARYID is a link to the EVENTDICTIONARY table for more information
about this event.

The EVENTDICTIONARY table contains information that was sent with the event.

• DICTIONARYID is the ID# used to associate dictionary items with an
event. See the EVENT table. All dictionary items that come from the
same event will have the same DICTIONARYID.

• KEYID is the link to the DICTIONARYKEYS table. Use it to determine the
key name for the value you are interested in.

• VALUE is the value of the dictionary item.
• DICTIONARYVALUEID is used if a “subdictionary” was passed in with the

main dictionary. The DICTIONARYVALUEID corresponds to more
DICTIONARYIDs with the sub dictionary information.

The DICTIONARYKEYS table contains the key names for dictionary values.

• KEYID is the ID# for a particular key. See EVENTDICTIONARY.
• DICTIONARYKEY is the name of the particular key

 4

3.2 Sample SQL
Below is some SQL that can be used to obtain information from the MIS backend
DB.

3.2.1 Information about a particular event
Given an event DBID, return the main EVENT information.

select * from EVENT where dbid=19

DBID 19
ID SPFTE__EWORKER@d0srv002.fnal.gov:12849__1090278018__2
TYPE StartPhysicalFileTransferEvent
TIME 1090278018
PARENTID FTE__EWORKER@d0srv002.fnal.gov:12849__1090278018__1
PRODUCERID EWORKER@d0srv002.fnal.gov:12849
DICTIONARYID 31

To get the dictionary information (printing out the dictionary keys and values)
for this event, do

select e.dbid, k.DICTIONARYKEY, v.value,
 v.DICTIONARYVALUEID
 from EVENT e, EVENTDICTIONARY v, DICTIONARYKEYS k
 where e.dbid=19 and
 v.dictionaryid = e.DICTIONARYID and
 v.KEYID=k.keyid

dbid DICTIONARYKEY value DICTIONARYVALUEID
1 19 EventType StartPhysicalFileTransferEvent {null}
2 19 FileName cosmics_0000140346_002.raw {null}
3 19 SourceLocation {null} 32
4 19 TargetLocation {null} 33
5 19 TargetLocationType Station {null}
6 19 SourceLocationType MSS {null}

Note that some of the values are null, but these have entries in
DICTIONARYVALUEID filled in. That means these entries are sub-dictionaries. To
view them, do

select e.dbid, k.DICTIONARYKEY, k1.DICTIONARYKEY,
v1.VALUE
 from EVENT e, EVENTDICTIONARY v, EVENTDICTIONARY v1,
DICTIONARYKEYS k,
 DICTIONARYKEYS k1
 where e.dbid=19 and
 v.dictionaryid = e.DICTIONARYID and
 k.KEYID = v.KEYID and

 5

 v.dictionaryvalueid is not null and
 v1.dictionaryid = v.dictionaryvalueid and
 k1.KEYID = v1.KEYID

dbid DICTIONARYKEY DICTIONARYKEY VALUE
1 19 SourceLocation SourceVolumeLabel prj029
2 19 SourceLocation SourceMSSName enstore
3 19 SourceLocation SourceFileOffset 10
4 19 SourceLocation SourcePath
 /pnfs/sam/beagle/copy1/datalogger/initial_runs/datalogger/all/all
5 19 TargetLocation TargetPath /sam/cache1/boo
6 19 TargetLocation TargetNode d0srv002.fnal.gov
7 19 TargetLocation TargetStation fnal-cabsrv2thmis

The first DICTIONARYKEY corresponds to the name of the sub-dictionary. The
second is the key for the particular value.

3.3 Doing SQL queries from python

The MySQLdb python module allows you to query a mysql database from within
python.

If you are logged into d0cs005, in your python script do the following:

import MySQLdb

Make connection to the database
db = MySQLdb.connect(user=’sam’, passwd=’samandeggs’, db=’SAM’)

If you are logged into another machine (ask Adam to install MySQLdb if it is not
there), then you need to first set up an ssh tunnel to d0cs005. Do the following
from your shell prompt (you will first need to get a Kerberos root ticket)…
ssh –N –L 3307:d0cs005.fnal.gov:3306 sam@d0cs005.fnal.gov &

Note that we use port 3307 instead of the default port of 3306 in case your
machine has its own mysql server running. Then you set up python with

import MySQLdb

Make connection to the database (note you only specify the port, not
the host name)
db = MySQLdb.connect(user=’sam’, passwd=’samandeggs’, db=’SAM’,
 port=3307)

In either case, now you use a database cursor to perform SQL commands. For
example,

cu = db.cursor()

 6

sql = “select * from EVENT where dbid=19”
nrows = cu.execute(sql)
print nrows # Returns 1

The nrows variable is filled with the number of rows that satisfy the query. To get
the result itself, use the cu.fetchone() to get one row at a time (each successive
call gets the next row). To get all of the rows as a list, do cu.fetchmany().

For example, if you did the calls above and then did,

results = cu.fetchmany()
print results

The output would be

((19L, 'SPFTE__EWORKER@d0srv002.fnal.gov:12849__1090278018__2',
'StartPhysicalFileTransferEvent', 1090278018L,
'FTE__EWORKER@d0srv002.fnal.gov:12849__1090278018__1',
'EWORKER@d0srv002.fnal.gov:12849', 31L),)

Note this is a list of a list (if there were more than one row returned, each row
would be an entry in the main list).

If you are doing an operation that changes the database (INSERT, UPDATE,
DROP, CREATE, DELETE), then you must call db.commit() to have those
changes take effect. If you haven’t committed and want to undo the changes, do
db.rollback(). Once you commit, you cannot undo the changes.

When you are done working with the database, you should always do
db.close()

4 Notes on Test Harness configuration
This info is more to remind Adam about the complicated configuration.
To run the MIS enabled station on the test harness, the following were
configured:

• The station sam configuration is mis-int.
• The stager sam configuration is mis-int-worker.
• Note that the new style DB server is used, so to set it up, you must do

sam –t –q mis-int (see the sourceMe file).
• Note that special versions of sam_batch_adapter_pyapi,

sam_common_pylib, sam_idl_pylib, and omniORB are needed. Again, see
the sourceMe file.

• Note that the station code was placed in
/fnal/ups/prd/sam_station/Linux-2-4/sam_station_mis (though the ups

 7

db is within /home/sam/cabsrv2th/upsdb). It was put there because the
sam_station executables are needed on all machines but there was no
room in the home area. It can’t stay like that forever.

